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Reactive Turing machines extend classical Turing machineswith a facility to model observable inter-
active behaviour. We call a behaviour executable if, and only if, it is behaviourally equivalent to the
behaviour of a reactive Turing machine. In this paper, we study the relationship between executable
behaviour and behaviour that can be specified in theπ-calculus. We establish that all executable
behaviour can be specified in theπ-calculus up to divergence-preserving branching bisimilarity. The
converse, however, is not true due to (intended) limitations of the model of reactive Turing machines.
That is, theπ-calculus allows the specification of behaviour that is not executable up to divergence-
preserving branching bisimilarity. Motivated by an intuitive understanding of executability, we then
consider a restriction on the operational semantics of theπ-calculus that does associate with every
π-term executable behaviour, at least up to the version of branching bisimilarity that does not require
the preservation of divergence.

1 Introduction

The Turing machine [19] is generally accepted as the machinemodel that captures precisely which
functions are algorithmically computable. As a theoretical model of the behaviour of actual computing
systems, however, it has limitations, as was already observed, e.g., by Petri [16]. Most notably, Turing
machines lack facilities to adequately deal with two important ingredients of modern computing:inter-
actionandnon-termination. Concurrency theory emerged from the work of Petri and developed into an
active field of research. It resulted in a plethora of calculifor the formal specification of the behaviour of
reactive systems, of which theπ-calculus [15, 18] is probably the best-known to date.

Research in concurrency theory has focussed on defining expressive process specification formalisms,
modal logics, studying suitable behavioural equivalences, etc. Expressiveness questions have also been
addressed extensively in concurrency theory, especially in the context of theπ-calculus (see, e.g., [12, 8]),
but mostly pertaining to the so-calledrelative expressivenessof process calculi. The absolute expressive-
ness of process calculi, and in particular the question as towhich interactive behaviour can actually be
executed by a conventional computing system, has received less attention. In this paper, we consider the
expressiveness of theπ-calculus with respect to the model of reactive Turing machines, proposed in [3]
as an orthogonal extension of classical Turing machines with a facility to model interaction in the style
of concurrency theory.

Reactive Turing machines serve to define which behaviour canbe executed by a computing system.
Formally, we associate with every reactive Turing machine atransition system, which mathematically
represents its behaviour. Then, we say that a transition system is executable if it is behaviourally equiv-
alent to the transition system of a reactive Turing machine.Process calculi generally also have their
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2 Executable Behaviour and theπ-Calculus

operational semantics defined by means of transition systems. Thus, we have a method to investigate the
absolute expressiveness of a process calculus, by determining to what extent transition systems speci-
fied in the calculus are executable, and by determining to what extent executable transition systems can
be specified in the calculus. Note that the behavioural equivalence is a parameter of the method: if a
behaviour specified in the process calculus is not executable up to some fine notion of behavioural equiv-
alence (e.g., divergence-preserving branching bisimilarity), it may still be executable up to some coarser
notion of behavioural equivalence (e.g., the divergence-insensitive variant of branching bisimilarity). The
entire spectrum of behavioural equivalences (see [10]) is at our disposal to draw precise conclusions. We
shall use the aforementioned method to characterize the expressiveness of theπ-calculus.

We shall confirm that theπ-calculus is expressive: every executable behaviour can bespecified in
theπ-calculus up to divergence-preserving branching bisimilarity [9, 11], which is the finest behavioural
equivalence discussed in van Glabbeek’s seminal paper on behavioural equivalences [10]. Our proof
explains how an arbitrary reactive Turing machine can be specified in theπ-calculus. The specification
consists of a component that specifies the behaviour of the tape memory, and a component that specifies
the behaviour of the finite control of the reactive Turing machine under consideration. The specification
of the behaviour of the tape memory is generic and elegantly uses the link mobility feature of theπ-
calculus.

We also prove that the converse is not true: it is possible to specify, in theπ-calculus, transition
systems that are not executable up to divergence-preserving branching bisimilarity. We shall analyze the
discrepancy and identify two causes. The first cause is that theπ-calculus presupposes an infinite supply
of names, which is technically essential both for the way input is modelled and for the way fresh name
generation is implemented. The infinite supply of names in theπ-calculus gives rise to an infinite alphabet
of actions. The presupposed alphabet of actions of a reactive Turing machine is, however, purposely kept
finite, since allowing reactive Turing machines to have an infinite alphabet of actions arguably leads to
an unrealistic model of executability. As an alternative, we shall therefore investigate the executability
of π-calculus behaviour subject to name restriction, considering only the observable behaviour of aπ-
calculus term that refers to a finite subset of the set of names. The underlying assumption is that any
realistic system will be based on a finite alphabet of input symbols. The second cause is that, even under
a finite name restriction, the transition system associatedwith aπ-calculus term may still have unbounded
branching. Transition systems with unbounded branching are not executable up to divergence-preserving
branching bisimilarity, but unbounded branching behaviour can be simulated at the expense of sacrificing
divergence preservation. We shall establish that, given a finite name restriction, the behaviour associated
with aπ-term is always executable up to (the divergence insensitive variant of) branching bisimilarity.

The paper is organized as follows. In Section 2, the basic definitions of reactive Turing machines and
divergence-preserving branching bisimilarity are recapitulated, and we also recall the operational seman-
tics of theπ-calculus with replication. In Section 3, we prove the reactive Turing power of theπ-calculus
modulo divergence-preserving branching bisimilarity: a finite specification of reactive Turing machines
in theπ-calculus is proposed and verified. In Section 4, we discuss the executability of transition systems
associated withπ-calculus processes. First, we discuss reactive Turing machines based on an infinite al-
phabet of actions, and argue that then, trivially, every transition system associated with aπ-calculus term
can be simulated up to divergence-preserving branching bisimilarity, but that the ensued notion of exe-
cutability is unrealistic. Then, we establish that every finite name restriction of a behaviour specifiable
in theπ-calculus is executable modulo the divergence-insensitive variant of branching bisimilarity. The
paper ends with a discussion of related work and some conclusions in Section 5.
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2 A Mathematical Theory of Behaviour

The transition system is the central notion in the mathematical theory of discrete-event behaviour. It is
parameterised by a setA of action symbols, denoting the observable events of a system. We shall later
impose extra restrictions onA, e.g., requiring that it be finite or have a particular structure, but for now
we letA be just an arbitrary abstract set. We extendA with a special symbolτ, which intuitively denotes
unobservable internal activity of the system. We shall abbreviateA∪{τ} byAτ.

Definition 1 (Labelled Transition System). AnAτ-labelled transition systemT is a triple (S,−→,↑),
where,

1. S is a set ofstates,

2. −→ ⊆ S×Aτ×S is anAτ-labelled transition relation. If (s,a, t) ∈ −→, we write s
a
−→ t.

3. ↑ ∈ S is the initial state.

Let (S,−→,↑) be anAτ-labelled LTS; we define the set of reachable states from a state sas follows.

Reach(s) = {s′ ∈ S | ∃n≥ 0∃s0, . . . , sn ∈ S, a1, . . . ,an ∈ Aτ. s= s0
a1
−→ ·· ·

an
−→ sn = s′} .

Transition systems can be used to give semantics to programming languages and process calculi. The
standard method is to first associate with every program or process expression a transition system (its
operational semantics), and then consider programs and process expressions modulo one of the many
behavioural equivalences on transition systems that have been studied in the literature. In this paper,
we shall use the notion of (divergence-preserving) branching bisimilarity [9, 11], which is the finest
behavioural equivalence from van Glabbeek’s linear time - branching time spectrum [10].

In the definition of (divergence-preserving) branching bisimilarity we need the following notation:

let −→ be anAτ-labelled transition relation on a setS, and leta ∈ Aτ; we write s
(a)
−→ t for “ s

a
−→ t or

a= τ ands= t”. Furthermore, we denote the transitive closure of
τ
−→ by−→+ and the reflexive-transitive

closure of
τ
−→ by −→∗.

Definition 2 (Branching Bisimilarity). Let T1 = (S1,−→1,↑1) and T2 = (S2,−→2,↑2) be transition sys-
tems. Abranching bisimulationfrom T1 to T2 is a binary relationR ⊆ S1×S2 such that for all states s1

and s2, s1Rs2 implies

1. if s1
a
−→1 s′1, then there exist s′2, s

′′
2 ∈ S2, such that s2 −→

∗
2 s′′2

(a)
−→ s′2, s1Rs′′2 and s′1Rs′2;

2. if s2
a
−→2 s′2, then there exist s′1, s

′′
1 ∈ S1, such that s1 −→

∗
1 s′′1

(a)
−→ s′1, s′′1Rs2 and s′1Rs′2.

The transition systems T1 and T2 arebranching bisimilar(notation: T1↔b T2) if there exists a branching
bisimulationR from T1 to T2 s.t.↑1 R ↑2.

A branching bisimulationR from T1 to T2 is divergence-preservingif, for all states s1 and s2, s1Rs2

implies

3. if there exists an infinite sequence(s1,i)i∈N such that s1= s1,0, s1,i
τ
−→ s1,i+1 and s1,iRs2 for all i ∈N,

then there exists a state s′2 such that s2 −→
+ s′2 and s1,iRs′2 for some i∈ N; and

4. if there exists an infinite sequence(s2,i)i∈N such that s2= s2,0, s2,i
τ
−→ s2,i+1 and s1Rs2,i for all i ∈N,

then there exists a state s′1 such that s1 −→
+ s′1 and s′1Rs2,i for some i∈ N.

The transition systems T1 and T2 are divergence-preserving branching bisimilar(notation: T1↔
∆
b T2) if

there exists a divergence-preserving branching bisimulation R from T1 to T2 such that↑1 R ↑2.
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For two LTSsT1 = (S1,−→1,↑1) andT2 = (S2,−→2,↑2), s1 ∈ S1 and s2 ∈ S2, we write s1↔b s2

(s1↔
∆
b s2) if there is a (divergence-preserving) branching bisimilarity from T1 to T2 relatings1 ands2.

Thus,↔b is a relation from the states ofT1 to the states ofT2, and it can be shown that it satisfies the
conditions of Definition 2. We can also writes1↔b s2 (s1↔

∆
b s2) if s1 ands2 are states in a single LTS

T and related by a (divergence-preserving) branching bisimulation fromT to itself.
The relations↔b and↔∆b are equivalence relations, both as relations on a single transition system,

and as relations on a set of transition systems [4, 11].
Next we define the notion of bisimulation up to↔b. Note that we adapt a non-symmetric bisimulation

up to relation, which is a useful tool to establish the proofsof↔b later.

Definition 3. Let T1 = (S1,−→1,↑1) and T2 = (S2,−→2,↑2) be two transition systems. A relationR ⊆
S1×S2 is a bisimulation up to↔b if, whenever s1Rs2, then for all a∈ Aτ:

1. if s1 −→
∗ s′′1

a
−→ s′1, with s1↔b s′′1 and a, τ∨ s′′1 6↔b s′1, then there exists s′2 such that s2

a
−→ s′2,

s′′1 ↔b◦R s2 and s′1↔b◦R s′2; and

2. if s2
a
−→ s′2, then there exist s′1, s

′′
1 such that s1 −→

∗ s′′1
a
−→ s′1, s′′1 ↔b s1 and s′1↔b◦R s′2.

Lemma 1. If R is a bisimulation up to↔b, thenR ⊆↔b.

2.1 Executable behaviour

The notion of reactive Turing machine (RTM) was put forward in [3] to mathematically characterise
which behaviour is executable by a conventional computing system. In this section, we recall the def-
inition of RTMs and the ensued notion of executable transition system. The definition of RTMs is pa-
rameterised with the setAτ, which we now assume to be a finite set. Furthermore, the definition is
parameterised with another finite setD of data symbols. We extendD with a special symbol� <D to
denote a blank tape cell, and denote the setD∪{�} of tape symbolsbyD�.

Definition 4 (Reactive Turing Machine). A reactive Turing machine(RTM)M is a triple (S,−→,↑),
where

1. S is a finite set ofstates,

2. −→ ⊆ S×D� ×Aτ ×D� × {L,R} × S is a finite collection of(D� ×Aτ ×D� × {L,R})-labelled

transition rules(we write s
a[d/e]M
−→ t for (s,d,a,e,M, t) ∈ −→),

3. ↑ ∈ S is a distinguishedinitial state.

Remark 1. The original definition of RTMs in [3] includes an extra facility to declare a subset of the
states of an RTM as being final states, and so does the associated notion of executable transition system.
In this paper, however, our goal is to explore the relationship between the transition systems associated
with RTMs and those that can be specified in theπ-calculus. Since theπ-calculus does not include the
facility to specify that a state has the option to terminate,we leave it out from the definition of RTMs too.

Intuitively, the meaning of a transitions
a[d/e]M
−→ t is that wheneverM is in states, andd is the symbol

currently read by the tape head, then it may execute the action a, write symboleon the tape (replacingd),
move the read/write head one position to the left or the right on the tape (depending on whetherM = L
or M = R), and then end up in statet.

To formalise the intuitive understanding of the operational behaviour of RTMs, we associate with
every RTMM anAτ-labelled transition systemT (M). The states ofT (M) are the configurations of
M, which consist of a state fromS, its tape contents, and the position of the read/write head. We denote
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by Ď� = {ď | d ∈ D�} the set ofmarkedsymbols; atape instanceis a sequenceδ ∈ (D� ∪ Ď�)∗ such
that δ contains exactly one element of̌D�, indicating the position of the read/write head. We adopt a
convention to concisely denote new placement of the tape head marker. Letδ be an element ofD∗�. Then
by δ< we denote the element of (D� ∪Ď�)∗ obtained by placing the tape head marker on the right-most
symbol ofδ (if it exists), and�̌ otherwise. Similarly>δ is obtained by placing the tape head marker on
the left-most symbol ofδ (if it exists), and�̌ otherwise.

Definition 5. LetM = (S,−→,↑) be an RTM. Thetransition systemT (M) associated withM is defined
as follows:

1. its set of states is the setCM = {(s, δ) | s∈ S, δ a tape instance} of all configurations ofM;

2. its transition relation−→⊆ CM×Aτ×CM is the least relation satisfying, for all a∈ Aτ, d,e∈D�
andδL, δR ∈ D∗�:

• (s, δLďδR)
a
−→ (t, δL<eδR) iff s

a[d/e]L
−→ t, and

• (s, δLďδR)
a
−→ (t, δLe>δR) iff s

a[d/e]R
−→ t, and

3. its initial state is the configuration(↑, �̌).

Turing introduced his machines to define the notion ofeffectively computable function. By analogy,
the notion of RTM can be used to define a notion ofeffectively executable behaviour.

Definition 6 (Executability). A transition system isexecutableif it is the transition system associated
with some RTM.

Usually, we shall be interested in executability up to some behavioural equivalence. In [3], a char-
acterisation of executability up to (divergence-preserving) branching bisimilarity is given that is inde-
pendent of the notion of RTM. In order to be able to recapitulate the results below, we need the follow-
ing definitions, pertaining to the recursive complexity andbranching degree of transition systems. Let
T = (S,−→,↑) be a transition system. We say thatT is effectiveif −→ is a recursively enumerable set.
The mappingout :S→ 2Aτ×S associates with every state its set of outgoing transitions, i.e., for alls∈ S,

out(s) = {(a, t) | s
a
−→ t}. We say thatT is computableif out is a recursive function. We call a transition

systemfinitely branchingif out(s) is finite for every states, andboundedly branchingif there existsB∈N
such that|out(s)| ≤ B for all s∈ S.

The following results were established in [3].

Theorem 1. 1. The transition systemT (M) associated with an RTMM is computable and bound-
edly branching.

2. For every finite setAτ and every boundedly branching computableAτ-labelled transition system
T, there exists an RTMM such that T↔∆b T (M).

3. For every finite setAτ and every effectiveAτ-labelled transition system T there exists an RTMM
such that T↔b T (M).

Notice the role played by divergence preservation in the preceding theorem. Divergence can be
used to simulate the behaviour in a state with a high branching degree using states with lower branch-
ing degrees; the idea stems from [1] and is generalised in [17] to prove that every effectiveAτ-labelled
transition system is weakly bisimilar to a computable transition system. We proceed to discuss a crite-
rion to decide whether a transition systemT = (S,−→,↑) is not executable up to divergence-preserving
branching bisimilarity, which is based on the notion of branching degree up to↔∆b . Let us denote the
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equivalence class ofs∈ S modulo↔∆b by [s]↔∆
b
= {s′ ∈ S | s↔∆b s′}. Thebranching degreeup to↔∆b of

s, denoted bydeg↔∆
b
(s), is defined as the cardinality of the set

{ (a, [s′]↔∆
b
) |∃s′′. s−→∗ s′′

a
−→ s′ & s↔∆b s′′ & (a= τ =⇒ s′′ 6↔∆b s′)} .

The branching degree modulo↔∆b of T is the least upper bound of the branching degrees of all reach-
able states, which is defined asdeg↔∆

b
(T) = sup{deg↔∆

b
(s) | s∈ Reach(↑)}. We say thatT is boundedly

branchingup to↔∆b if there existsB∈N, such thatdeg↔∆

b
(T)≤ B, otherwise it isunboundedly branching

up to↔∆b .

Lemma 2. If s↔∆b t, then deg↔∆
b
(s) = deg↔∆

b
(t).

A divergence(up to↔∆b ) in a transition system is an infinite sequence of reachable statess1, s2, . . .

such thats1
τ
−→ s2

τ
−→ ·· · andsi ↔

∆
b sj for all i, j ∈ N. The following lemma shows that, in the absence

of a divergence, boundedly branching transition systems are boundedly branching up to↔∆b .

Lemma 3. If a transition system is boundedly branching and does not have divergence up to↔∆b , then
it is boundedly branching up to↔∆b .

Thus we conclude the following theorem from Theorem 1(1) andLemma 3.

Theorem 2. If a transition system T has no divergence up to↔∆b and is unboundedly branching up to
↔∆

b , then it is not executable modulo↔∆b .

2.2 π-Calculus

Theπ-calculus was proposed by Milner, Parrow and Walker in [15] as a language to specify processes
with link mobility. The expressiveness of many variants of theπ-calculus has been extensively studied.
In this paper, we shall consider the basic version presentedin [18], excluding the match prefix. We
recapitulate some definitions from [18] below and refer to the book for detailed explanations.

We presuppose a countably infinite setN of names; we use strings of lower case letters for ele-
ments ofN . Theprefixes, processesandsummationsof theπ-calculus are, respectively, defined by the
following grammar:

π ≔ xy | x(z) | τ (x,y,z∈ N)

P ≔ M | P | P | (z)P | !P

M ≔ 0 | π.P | M+M .

In x(z).P and (z)P, the displayed occurrence of the namez is bindingwith scopeP. An occurrence of
a name in a process isboundif it is, or lies within the scope of, a binding occurrence inP; otherwise it is
free. We usefn(P) to denote the set of names that occur free inP, andbn(P) to denote the set of names
that occur bound inP.

An α-conversion betweenπ-terms is defined in [18] as a finite number of changes of bound names.
In this paper, we do not distinguish amongπ-terms that areα-convertible, and we writeP = Q if P and
Q areα-convertible.

We define the operational behaviour ofπ-processes by means of the structural operational semantics
in Fig. 1, in whichα ranges over the set of actions of theπ-calculus

Aπ = {xy, xy, x(z) | x,y,z∈ N}∪ {τ} .
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PREFIX
τ.P

τ
−→ P xy.P

xy
−→ P x(y).P

xz
−→ P{z/y}

SUML
P
α
−→ P′

(P+Q)
α
−→ P′

PARL
P
α
−→ P′

P | Q
α
−→ P′ | Q

bn(α)∩ fn(Q) = ∅

COML
P

xy
−→ P′, Q

xy
−→ Q′

P | Q
τ
−→ P′ | Q′

CLOSEL
P

x(z)
−→ P′, Q

xz
−→ Q′

P | Q
τ
−→ (z)(P′ | Q′)

z< fn(Q)

RES
P
α
−→ P′

(z)P
α
−→ (z)P′

z< α OPEN
P

xz
−→ P′

(z)P
x(z)
−→ P′

z, x

REP
P
α
−→ P′

!P
α
−→ P′ | !P

P
xy
−→ P′, P

xy
−→ P′′

!P
τ
−→ (P′ | P′′) | !P

P
x(z)
−→ P′, P

xz
−→ P′′

!P
τ
−→ (z)(P′ | P′′) | !P

Figure 1: Operational rules for theπ-calculus

The rules in Fig. 1 define onπ-terms anAπ-labelled transition relation−→. Then, we can associate
with everyπ-termP anAπ-labelled transition systemT (P) = (SP,−→P,P). The set of statesSP of T (P)
consists of allπ-terms reachable fromP, the transition relation−→P of T (P) is obtained by restricting the
transition relation−→ defined by the structural operational rules toSP (i.e.,−→P=−→∩(SP×Aπ×SP)),
and the initial state ofT (P) is theπ-termP.

For convenience, we sometimes want to abbreviate interactions that involve the transmission of no
name at all, or more than one name. Instead of giving a full treatment of the polyadicπ-calculus (see
[18]), we define the following abbreviations:

x〈y1, . . . ,yn〉.P
def
= (w)xw.wy1. · · ·wyn.P (w < fn(P)), and

x(z1, . . . ,zn).P
def
= x(w).w(z1). · · ·w(zn).P .

The following lemma establishes that divergence-preserving branching bisimilarity is compatible
with restriction and parallel composition. This will be a useful property when establishing the correctness
of our simulation of RTMs in theπ-calculus, in the next section.

Lemma 4. For all π-terms P, P′, Q, and Q′:

1. if P↔∆b P′, then(a)P↔∆b (a)P′;

2. if P↔∆b P′ and Q↔∆b Q′, then P| Q↔∆b P′ | Q′.

3 Specifying Executable Behaviour in theπ-Calculus

In the previous section, we have introduced theπ-calculus as a language to specify behaviour of systems
with link mobility, and we have proposed RTMs to define a notion of executable behaviour. In this section
we prove that every executable behaviour can be specified in theπ-calculus up to divergence-preserving
branching bisimilarity. To this end, we associate with every RTM M a π-term P that simulates the
behaviour ofM up to divergence-preserving branching bisimilarity, thatis,T (M)↔∆b T (P).
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Ci Ci+1 Cn Br,n+1Ci−1CmBl,m−1

Hi

. . .. . .

S

uiti
r i = ti+1ti−1 = l i

r i = ti+1ti−1 = l i rn = tn+1tm−1 = lm

write, left, rightread

Figure 2: Specification of an RTM utilizing the linking structure of theπ-calculus

The structure of our specification is illustrated in Figure 2. In this figure, each node represents a
parallel component of the specification, each labelled arrow stands for a communication channel with
certain labels, and the dashed lines represent the links between cells. Moreover, the equalities on arrows
and dashed lines tell the correspondence between the names defined in the linked terms. The specification
consists of a generic finite specification of the behaviour ofa tape (parallel componentsHk, Bl,k, Ck,
Br,k in Figure 2), and a finite specification of a control process that is specific for the RTMM under
consideration (parallel componentS in Figure 2). We first discuss the generic specification of thetape in
Section 3.1, then we discuss how to add a suitable control process specific forM in Section 3.2 proving
thatM is simulated by the parallel composition of the two parts.

3.1 Tape

In [1], the behaviour of the tape of a Turing machine is finitely specified in ACPτ making use of finite
specifications of two stacks. The specification is not easilymodified to take intermediate termination
into account, and therefore, in [3], an alternative solution is presented, specifying the behaviour of a tape
in TCPτ by using a finite specification of a queue (see also [2]). In this paper, we will exploit the link
passing feature of theπ-calculus to give a more direct specification. In particular, we shall model the
tape as a collection of cells endowed with a link structure that organises them in a linear fashion.

We first give an informal description of the behaviour of a tape. The state of a tape is characterised by
a tape instanceδLďδR, consisting of a finite (but unbounded) sequence of data withthe current position
of the tape head indicated by ˇ. The tape may then exhibit the following observable actions:

1. readd: the datum under the tape head is output along the channelread;

2. write(e): a datume is written on the position of the tape head, resulting in a newtape instance
δLěδR; and

3. left, right: the tape head moves one position left or right, resulting inδL<dδR or δLd>δR, respec-
tively.

Henceforth, we assume that tape symbols are included in the set of names, i.e., thatD� ⊆ N .
In our π-calculus specification of a tape, each individual tape cellis specified as a separate compo-

nent, and there is a separate component modelling the tape head. A tape cell stores a datumd, represented
by a free name in the specification, and it has pointersl andr to its left and right neighbour cells. Fur-
thermore, it has two links to the component modelling the tape head: the linku is used by the tape head
for updating the datum, and the linkt serves as a general communication channel for communicating all
relevant information about the cell to the tape head. The following π-term represents the behaviour of a
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tape cell:

C
def
= c(t, l, r,u,d).C(t, l, r,u,d)

C(t, l, r,u,d)
def
= u(e).c〈t, l, r,u,e〉.0+ t〈l, r,u,d〉.c〈t, l, r,u,d〉.0 .

Note that the behaviour of an individual tape cellC(t, l, r,u,d) is as follows: either it receives along
channelu an updatee for its datumd, after which it recreates itself with datume in place ofd; or it
outputs all relevant information about itself (i.e., the links to its left and right neighbours, its update
channelu, and the stored datumd) to the tape head along channelt, after which it recreates itself. A cell
is created by a synchronisation on namec, by which all relevant information about the cell is passed;we
shall have a component !C facilitate the generation of new incarnations of existing tape cells.

At any moment, the number of tape cells will be finite. To modelthe unbounded nature of the tape,
we define a processB that serves to generate new blank tape cells on either side ofthe tape whenever
needed:

B
def
= bl(t, r).(u, l)Bl(t, l, r,u)+br (t, l).(u, r)Br (t, l, r,u)

Bl(t, l, r,u)
def
= t〈l, r,u,�〉.(c〈t, l, r,u,�〉.0 | bl〈l, t〉.0)

Br(t, l, r,u)
def
= t〈l, r,u,�〉.(c〈t, l, r,u,�〉.0 | br〈t, r〉.0) .

Note thatB offers the choice to either create a blank tape cell at the left-hand side of the tape through
Bl(t, l, r,u), or a blank tape cell at the right-hand side of the tape through Br(t, l, r,u). In the first case,
suppose the original leftmost cell has the channelsto andlo, for itself and its left neighbour, respectively,
then for the new cell, we havet = lo andr = to, in order to maintain the links to its neighbour. Moreover,
at the creation of the new blank cell, two new links are utilized: u is the update channel of the new
blank cell, andl will later be used as the link to generate another cell. Thus anew cell is generated from
c〈t, l, r,u,�〉.0, and the cell generator on the left is updated bybl〈l, t〉.0. In the second case, a symmetrical
procedure is implemented byBr(t, l, r,u).

Throughout the simulation of an RTM, the number of parallel components modelling individual tape
cells will grow. We shall presuppose a numbering of these parallel components with consecutive integers
from some interval [m,n] (m andn are integers such thatm≤ n), in agreement with the link structure.
The numbering is reflected by a naming scheme that adds the subscript i to the linkst, l, r, u andd of
the ith cell. We abbreviateC(ti , l i , r i ,ui ,di) by Ci(di), andBl(ti , l i , r i ,ui) andBl(ti , l i , r i ,ui) by Bl,i andBr,i,
respectively. Let~d[m,n] = dm,dm+1, . . . ,dn−1,dn; we define:

Cells[m,n](~d[m,n])
def
= (bl ,br ,c)(Bl,m−1 |Cm(dm) |Cm+1(dm+1) | · · · |Cn−1(dn−1) |Cn(dn) | Br,n+1 | !C | !B) .

The component modelling the tape head serves as the interface between the tape cells and the RTM-
specific control process. It is defined as:

H
def
= h(t, l, r,u,d).H(t, l, r,u,d)

H(t, l, r,u,d)
def
= readd.h〈t, l, r,u,d〉.0+write(e).ue.h〈t, l, r,u,e〉.0

+ left.l(l′, r′,u′,d′).h〈l, l′, r′,u′,d′〉.0

+ right.r(l′, r′,u′,d′).h〈r, l′, r′,u′,d′〉.0 .

The tape head maintains two links to the current cell (a communication channelt and an update
channelu), as well as links to its left and right neighbour cells (l andr, respectively). Furthermore, the
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tape head remembers the datumd in the current cell. The datumd may be output along theread-channel.
Furthermore, a new datumemay be received through thewrite-channel, which is then forwarded through
the update channelu to the current cell. Finally, the tape head may receive instructions to move left or
right, which has the effect of receiving information about the left or right neighbours of the current cell
throughl or r, respectively. In all cases, a new incarnation of the tape head is started, with a call on the
h-channel.

Let~t[m,n] = tm, tm+1, . . . , tn−1, tn, and~u[m,n] = um,um+1, . . . ,un−1,un. Furthermore, letHi =H(ti , l i , r i ,ui ,di),
and we define,

Tapei[m,n](~d[m,n])
def
= (~t[m−1,n+1],~u[m,n])((h)(Hi | !H) | Cells[m,n](d[m,n])) .

Lemma 5. Suppose Ci ,Bl,m,Br,n,Hi are as defined before, then the following statements are valid:

1. (c)(c〈ti , l i , r i ,ui ,di〉.0 | !C)↔∆b (c)(Ci (di) | !C)

2. (bl ,br )(bl〈tm, rm〉.0 | !B)↔∆b (bl ,br ,um, lm)(Bl,m | !B)

3. (bl ,br )(br〈tn, ln〉.0 | !B)↔∆b (bl ,br ,un, rn)(Br,n | !B)

4. (h)(h〈ti , l i , r i ,ui ,di〉.0 | !H)↔∆b (h)(Hi | !H)

We shall writeP
a
−→↔∆b P′ for “there is aP′′ such thatP

a
−→ P′′ andP′′↔∆b P′”.

Lemma 6. There are four types of transitions from Tapei
[m,n](

~d[m,n]):

1. Tapei[m,n](
~d[m,n])

readdi
−→↔∆b Tapei[m,n](

~d[m,n]);

2. Tapei[m,n](
~d[m,n])

write(e)
−→ ↔∆b Tapei[m,n](d[m,i−1],e,d[i+1,n]);

3. Tapei[m,n](
~d[m,n])

left
−→↔∆b Tapei−1

[m,n](
~d[m,n]) (if i >m);

Tapei[m,n](
~d[m,n])

left
−→↔∆b Tapei−1

[m−1,n](�,
~d[m,n]) (if i =m);

4. Tapei[m,n](
~d[m,n])

right
−→↔∆b Tapei+1

[m,n](
~d[m,n]) (if i < n);

Tapei[m,n](
~d[m,n])

right
−→↔∆b Tapei+1

[m,n+1](
~d[m,n] ,�) (if i = n).

3.2 Finite control

We associate with every RTMM = (SM,−→M,↑M) a finite specification of its control process. Herem
can be eitherleft or right.

S
def
=
∑

s∈SM

s.
∑

d∈D�

d.Ss,d

Ss,d
def
=

∑

(s,d,a,e,m,t)∈−→M

a.writee.m.read( f ).t. f .0

Let ~s= s1, s2, . . . , sm ∈ SM, and~e= e1,e2, . . . ,en ∈ D�; we define

Controls,d
def
= (~s,~e)(Ss,d | !S) .

The following lemma illustrates the behaviour of the control process.
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Lemma 7. Given an RTMM = (SM,−→M,↑M), we have the following transition sequence:

Controls,d
a
−→ (~s,~e)(writee.m.read( f ).t. f .0 | !S)

writee
−→

m
−→

read f
−→↔∆b Controlt, f .0 .

if and only if there is a transition rule(s,d,a,e,m, t) ∈−→M.

Finally, for a given RTMM, we associate with every configuration (s, δLďδR) a π-term Ms,δLďδR
,

consisting of a parallel composition of the specifications of its tape instance and control process. Let
~r = read,write, left, right; we define

Ms,δLďδR
= (~r)(Controls,d | Tapei[m,n](~d[m,n])), where~d[m,n] = δLďδR .

The following lemma shows thatMs,δLďδR
actually simulates every computation step of an RTM.

Lemma 8. Given an RTMM = (SM,−→M,↑M), for every configuration(s, δLďδR), its specification
Ms,δLďδR

has the following transition

Ms,δLďδR

a
−→↔∆b Mt,δ′L f̌ δ′R

,

if and only if there is a transition(s, δLďδR)
a
−→ (t, δ′L f̌ δ′R).

Theorem 3. Given an RTMM, we have

T (M↑,�̌)↔
∆
b T (M) .

Thus we have the following expressiveness result for theπ-calculus.

Corollary 1. For every executable transition system T there exists aπ-term P, such that T↔∆b T (P).

4 Executability of the π-Calculus

We have proved that every executable behaviour can be specified in theπ-calculus modulo divergence-
preserving branching bisimilarity. We shall now investigate to what extent behaviour specified in the
π-calculus is executable. Recall that we have defined executable behaviour as behaviour of an RTM. So,
in order to prove that the behaviour specified by aπ-term is executable, we need to show that the transition
system associated with thisπ-term is behaviourally equivalent to the transition systemassociated with
some RTM.

Note that there is an apparent mismatch between the formalisms of RTMs and theπ-calculus. On
the one hand, the notion of RTM as we have defined in Section 2 presupposesfinite setsAτ andD� of
actions and data symbols, and also the transition relation of an RTM isfinite. As a consequence, we have
observed, the transition system associated with an RTM is finitely branching, and, in fact, its branching
degree is bounded by a natural number. (Note that this does not mean that RTMs cannot deal with data of
unbounded size; it only means that it has to be encoded using finitely many symbols.) Theπ-calculus, on
the other hand, presupposes an infinite set of names by which an infinite set of actionsAπ is generated.
Furthermore, the transition system associated with aπ-term by the structural operational semantics (see
Fig. 1) may contain states with an infinite branching degree,due to the rules for input prefix and bound
output prefix. Regarding this gap, we shall explore two ways to establish simulation ofπ-calculus terms
by RTMs. One is to extend the formalism of RTMs to presuppose an infinite set of actions, and the other
is to restrict theπ-calculus to use a finite set of names.
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4.1 RTMs with Infinitely Many Actions

Let us first consider allowing RTMs to have infinitely many actions in order to accommodate for the
infinitely many names in theπ-calculus.

Recall Definition 4, an RTM has a finite set of statesS and a finite set of transition rules defining
the associated transition relation. If we allow RTMs to haveinfinitely many actions, then, inevitably, we
should also allow them to have infinitely many transition rules. The following lemma shows that we then
also either need infinitely many states or infinitely many data symbols.

Lemma 9. There does not exist an RTM with infinitely many actions but finitely many states and data
symbols that simulates theπ-term P= x(y).ȳ.0 modulo branching bisimilarity.

Now, assume we allow the alphabet of data symbols to be infinite. It is then straightforward to use
it to encode an infinite set of control states. Allowing an infinite set of data symbols, in fact, greatly
enhances the expressiveness of RTMs, as the following theorem shows.

Theorem 4. Every infinitely branching effective transition system can be simulated up to divergence-
preserving branching bisimilarity by an RTM with infinite sets of action symbols and data symbols.

As a consequence, we can simulate everyπ-calculus term up to divergence-preserving branching
bisimilarity with an RTM having infinite sets of action symbols and data symbols. So, if we would
extend the formalism of RTMs allowing infinitely many actionsymbols and data symbols and define the
notion of executability on the basis of it, then we would get that everyπ-calculus process is executable
up to divergence-preserving branching bisimilarity. One may argue, however, that such extension is
not in accordance with reality, referring to the finiteness of realistic computing systems. Actually, this
result only shows the existence of such theoretical models,rather than giving a way of implementation.
Moreover, the conclusion is valid for every model with an effective operational semantics, even if it has
infinite branching.

4.2 Restricting theπ-calculus

Now we proceed to consider the other option, which is to propose a restriction on the transition systems
associated withπ-terms such that they refer only to finitely many actions.

The infinity of the set of actions in theπ-calculus arises in two ways, the free input names and
the bound output names. The free input names allow a process to receive any potential input from
the environment and the bound output names give a process theability to generate unboundedly many
distinct private channels to communicate with other processes. For both purposes, infinite branching
of the transition system is essential. Observe, that the infinite branching caused by input prefix can
be thought of as a technical device in the operational semantics to model the communication of an
arbitrary name from one parallel component to another. The name that will be received, can either
be a free name of the sending process (a value), or a restricted name (a private channel). Since the
sending parallel component will only have a finite number of free names, only finitely many values can
be communicated. Although, technically speaking, according to the operational semantics, infinitely
many distinct private channels may be communicated when an input prefix synchronises with a bound
output prefix, the communicated private channel is not observable, and the resultingπ-terms are all
equated byα-conversion, so the only observable effect of the interaction is that after the communication
the sending and receiving parties share a private channel ofwhich the name is irrelevant.

Our goal is to investigate to what extent the behaviour specified by an individualπ-term is executable.
Motivated by the above intuitive interpretation of interaction of aπ-term with its environment, we assume
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that the behaviour specified by thatπ-term is executed in an environment that may offer data values from
some presupposed finite set on its input channels. This assumption seems reasonable as a machine should
know in advance which symbols to expect as an input. Furthermore, we assume that there is a facility
for establishing a private channel between theπ-term and its environment. (Such a facility could, e.g., be
implemented using encryption, but we will abstract from theactual implementation of the facility.) We
define a restriction on the transition systems associated with π-terms that is based on these assumptions.

Definition 7. LetN ′ ⊆N be a set of names, letA′π =Aπ− ({xy | x,y∈ N , y<N ′}∪{x(z) | x,z∈ N}), and
let P be aπ-term. The transition system associated with P restricted toN ′ , denoted byT (P) ↾N ′, is a
triple (SP ↾N

′,−→P↾N
′,P), obtained fromT (P) = (SP,−→P,P) as follows:

1. SP ↾ N
′ is the set of states reachable from P by means of transitions that are not labelled by xy

(y<N ′); and

2. −→P↾N
′ is the restriction of−→P obtained by excluding all transitions labelled with xy (y<N ′),

and relabelling all transitions labelled withx(z) (x,z∈ N) to νx, i.e.,

−→P↾N
′ = (−→P∩ (SP ↾N

′×A′π×SP ↾N
′))∪{(s, νx, t) | s, t ∈ SP ↾N

′, s
x(z)
−→P t} .

Using [18, Lemma 1.4.1], it is straightforward to show that for everyπ-term the set of actions of the
π-calculus appearing as labels inT (P) ↾N ′ is finite. Furthermore, the transition system associated with a
π-term by the operational semantics, and also its restriction according to Definition 7 are clearly effective.
Hence, as an immediate corollary of Theorem 1(3), we may conclude that the transition system associated
with aπ-term can be simulated by an RTM modulo (divergence-insensitive) branching bisimilarity.

Corollary 2. For every closedπ-term P, and for every finite set of input namesN ′ ⊆ N , there exists an
RTM M such thatT (P) ↾N ′↔b T (M).

The following example shows that there existπ-terms with which the structural operational semantics
associates a transition system without divergence that is unboundedly branching up to↔∆b . Note that by
Theorem 2 suchπ-terms are not executable modulo divergence-preserving branching bisimilarity.

Example 1. Consider theπ-process P
def
= (c, i,d, s,flip)(i s.0 | flip.0 | !C | !I | !D), with C, I and D defined

as follows:

C
def
= c(h, t,b).(h〈t,b〉.0+flip.c〈h, t,1〉.0)

I
def
= i(h).(inc.(h′)c〈h′,h,0〉.ih′.0+flush.flip.dh.0)

D
def
= d(h).(h(t,b).b.d t.0)

Intuitively, the process!C facilitates the generation of a linked list of one-bit cells with a pointer h
to the head of the list, a pointer t to the tail of the list, and abit b. Each cell may either output, along h,
the link t to the tail of the list and its bit b, or it may receivethe instruction flip after which it recreates
itself with the value1. The process I serves as the interface process. It maintainsa link to the head of
the list. Upon receiving an inc-instruction, it adds another one-bit cell to the list, and upon receiving the
flush-instruction, it flips at most one of the bits, and then calls D. The process D then simply outputs the
bits in reverse sequence.

Consider the state reached after performing n inc-actions,followed by a flush-action. In this state,
the list contains a string of n0s. Theτ-transitions that correspond to the interaction offlip between
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I and one of the flips of one of the one-bit cells or flip in the definition of P have the effect of non-
deterministically changing (at most) one of the0s to a1. Note that there are n+ 1 suchτ-transitions,
and since D will subsequently output the sequence in order, the states reached by theseτ-transitions
are (pairwise) not divergence-preserving branching bisimilar. Hence, it follows that for every n, the
transition system associated with P has a reachable state with a branching degree modulo↔∆b of at least
n+1. It follows that the transition system associated with P is unboundedly branching up to↔∆b .

Note that the only names occurring as part of the labels on thetransitions in the transition system
associated with theπ-term P in the preceding example are0, 1, inc andflush, so ifN ′ contains at least
these four names, thenP satisfiesT (P) ↾N ′ = T (P). Let us say, in general, that aπ-termP hasfinitely
many observable namesif there exists a finite setN ′ ⊆ N such thatT (P) ↾ N ′ = T (P). Note that, in
this case,P cannot have parameterised free inputs, nor bound outputs. For π-terms with finitely many
observable names, we have the following corollary as a consequence of a combination of Corollary 2
and Example 1.

Corollary 3. Every closedπ-term P with finitely many observable names is executable up to (divergence-
insensitive) branching bisimilarity, but there exist closed π-terms with finitely many observable names
that are not executable up to divergence-preserving branching bisimilarity.

Our notion of restriction is introduced to restrict labelled transition systems associated withπ-terms
to finitely many names. Alternatively, we could define a finiteversionπfin of theπ-calculus, presupposing
afiniteset of namesN right from the beginning. IfT (P) is the labelled transition system associated with
P according to the operational semantics ofπfin, thenT (P) ↾N is obtained fromT (P) by replacing all
transitions with the labelx(z) by transitions with the labelνx. Apart from this modification, restriction
keeps all observable behaviour.

5 Conclusions and Related Work

We have investigated the expressiveness of theπ-calculus in relation to the theory of executability pro-
vided by reactive Turing machines. The issue of the expressiveness of theπ-calculus has been exten-
sively studied (see [12] for a comprehensive overview of research in this area). A distinction is usually
made between absolute and relative expressiveness results. The absolute expressiveness results focus on
proving the (im)possibility of expressing a computationalphenomenon in a calculus; the relative expres-
siveness results are mostly about encoding one calculus in another. Our results pertain to the absolute
expressiveness of theπ-calculus.

We have established that, up to divergence-preserving branching bisimilarity, every executable transi-
tion system can be specified in theπ-calculus, showing that theπ-calculus is reactively Turing powerful.
Milner already established in [14] that theπ-calculus is Turing powerful, by exhibiting an encoding of
theλ-calculus in theπ-calculus by which every reduction in theλ-calculus is simulated by a sequence of
reductions in theπ-calculus. Our result that all executable behaviour can be specified in theπ-calculus up
to divergence-preserving branching bisimilarity also implies that theπ-calculus is Turing powerful, and
thus it subsumes Milner’s result. Similarly, in [5] severalexpressiveness results for variants of CCS are
obtained via an encoding of Random Access Machines, and alsothose results only make claims about
the computational expressiveness of the calculi. Notice that the results in [14] and [5] confirm the com-
putational power of the respective calculi, but do not make aqualitative statement about its interactive
expressiveness. By showing that reactive Turing machines can be faithfully simulated, we at the same
time confirm the interactive expressiveness of theπ-calculus.
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In his recent work [7], Fu also proposes to study computationand interaction in an integrated the-
ory. His theory is built on four fundamental principles, rather than on a machine model. One of the
contributions of his theory is a calculus including a bare minimum of primitives to be computationally
and interactively complete, and he uses it to confirm the completeness of theπ-calculus. We leave it for
future work to explore the relationship between Fu’s theoryof interaction and the theory of executability
based on reactive Turing machines.

We have observed that it is possible to specify behaviour in theπ-calculus that is not executable up
to any reasonable notion of behavioural equivalence, simply because it uses infinitely many observable
names. For the presentation of theπ-calculus it is technically important to presuppose an infinite set of
names especially to model the feature of dynamic creation ofprivate channels between components. In a
real system, however, private channels between componentsmay be implemented differently, e.g., using
some form of encryption. We have shown that a behaviour specified in theπ-calculus is executable up
to the divergence-insensitive variant of branching bisimilarity if one restricts to finitely many observable
names and does not associate a unique identifier with every dynamically created private channel.

It has been claimed (e.g., in [6]) that theπ-calculus provides a model of computation that is be-
haviourally more expressive than Turing machines. Our results provide further justification for this
claim, and characterise the difference. It should be noted that the difference in expressive power is at the
level of interaction (allowing interaction between an unbounded number of components), rather than at
the level of computation.
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