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Reactive Turing machines extend classical Turing machirtisa facility to model observable inter-
active behaviour. We call a behaviour executable if, ang @nit is behaviourally equivalent to the
behaviour of a reactive Turing machine. In this paper, wdysthe relationship between executable
behaviour and behaviour that can be specified instoalculus. We establish that all executable
behaviour can be specified in thecalculus up to divergence-preserving branching bisintylaThe
converse, however, is not true due to (intended) limitatiofthe model of reactive Turing machines.
That is, ther-calculus allows the specification of behaviour that is n@toeitable up to divergence-
preserving branching bisimilarity. Motivated by an iniwgt understanding of executability, we then
consider a restriction on the operational semantics ofrtbalculus that does associate with every
n-term executable behaviour, at least up to the version afdiviag bisimilarity that does not require
the preservation of divergence.

1 Introduction

The Turing machine[[19] is generally accepted as the macimodel that captures precisely which
functions are algorithmically computable. As a theorétinadel of the behaviour of actual computing
systems, however, it has limitations, as was already obdee.g., by Petri [16]. Most notably, Turing
machines lack facilities to adequately deal with two impnttingredients of modern computiniter-
action andnon-termination Concurrency theory emerged from the work of Petri and dpeal into an
active field of research. It resulted in a plethora of calfarithe formal specification of the behaviour of
reactive systems, of which thecalculus[15] 18] is probably the best-known to date.

Research in concurrency theory has focussed on definingssipe process specification formalisms,
modal logics, studying suitable behavioural equivalenets Expressiveness questions have also been
addressed extensively in concurrency theory, especiathye context of the-calculus (see, e.gl, [12, 8]),
but mostly pertaining to the so-calleelative expressiveness process calculi. The absolute expressive-
ness of process calculi, and in particular the question aghioh interactive behaviour can actually be
executed by a conventional computing system, has receaasdaktention. In this paper, we consider the
expressiveness of thecalculus with respect to the model of reactive Turing maekj proposed i [3]
as an orthogonal extension of classical Turing machines avfacility to model interaction in the style
of concurrency theory.

Reactive Turing machines serve to define which behavioubeagxecuted by a computing system.
Formally, we associate with every reactive Turing machirneaasition system, which mathematically
represents its behaviour. Then, we say that a transiticersyis executable if it is behaviourally equiv-
alent to the transition system of a reactive Turing machiReocess calculi generally also have their
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2 Executable Behaviour and theCalculus

operational semantics defined by means of transition sygst@hus, we have a method to investigate the
absolute expressiveness of a process calculus, by detegrmwhat extent transition systems speci-
fied in the calculus are executable, and by determining td wxkt@nt executable transition systems can
be specified in the calculus. Note that the behavioural edgmee is a parameter of the method: if a
behaviour specified in the process calculus is not exe@itgbto some fine notion of behavioural equiv-
alence (e.g., divergence-preserving branching bisiity)ait may still be executable up to some coarser
notion of behavioural equivalence (e.g., the divergensessitive variant of branching bisimilarity). The
entire spectrum of behavioural equivalences (see [10})asiadisposal to draw precise conclusions. We
shall use the aforementioned method to characterize thessipeness of the-calculus.

We shall confirm that the-calculus is expressive: every executable behaviour cespbeified in
then-calculus up to divergence-preserving branching bisiity§9] [11], which is the finest behavioural
equivalence discussed in van Glabbeek’s seminal paper lwawvioeiral equivalences [110]. Our proof
explains how an arbitrary reactive Turing machine can beifipd in thes-calculus. The specification
consists of a component that specifies the behaviour of geerteemory, and a component that specifies
the behaviour of the finite control of the reactive Turing imiae under consideration. The specification
of the behaviour of the tape memory is generic and elegarsi®s the link mobility feature of the-
calculus.

We also prove that the converse is not true: it is possiblepéziy, in thesr-calculus, transition
systems that are not executable up to divergence-pregebovamching bisimilarity. We shall analyze the
discrepancy and identify two causes. The first cause isltleat-talculus presupposes an infinite supply
of names, which is technically essential both for the wawing modelled and for the way fresh name
generation is implemented. The infinite supply of namesémrtbalculus gives rise to an infinite alphabet
of actions. The presupposed alphabet of actions of a reattiking machine is, however, purposely kept
finite, since allowing reactive Turing machines to have dmite alphabet of actions arguably leads to
an unrealistic model of executability. As an alternative, stall therefore investigate the executability
of n-calculus behaviour subject to name restriction, consideonly the observable behaviour ofra
calculus term that refers to a finite subset of the set of narbs underlying assumption is that any
realistic system will be based on a finite alphabet of inputlsyls. The second cause is that, even under
a finite name restriction, the transition system associatttar-calculus term may still have unbounded
branching. Transition systems with unbounded branchiagnat executable up to divergence-preserving
branching bisimilarity, but unbounded branching behawian be simulated at the expense of sacrificing
divergence preservation. We shall establish that, givemite fname restriction, the behaviour associated
with an-term is always executable up to (the divergence insensitiviant of) branching bisimilarity.

The paper is organized as follows. In Secfibn 2, the basiaitiefis of reactive Turing machines and
divergence-preserving branching bisimilarity are retdpied, and we also recall the operational seman-
tics of ther-calculus with replication. In Sectidn 3, we prove the reacTuring power of ther-calculus
modulo divergence-preserving branching bisimilarity: rétd specification of reactive Turing machines
in ther-calculus is proposed and verified. In Secfibn 4, we disdwsgxecutability of transition systems
associated witlr-calculus processes. First, we discuss reactive Turindnimes based on an infinite al-
phabet of actions, and argue that then, trivially, evemydition system associated withracalculus term
can be simulated up to divergence-preserving branchirignitdsity, but that the ensued notion of exe-
cutability is unrealistic. Then, we establish that everytéimame restriction of a behaviour specifiable
in the r-calculus is executable modulo the divergence-insemesitariant of branching bisimilarity. The
paper ends with a discussion of related work and some cdaokig Sectiof 5.
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2 A Mathematical Theory of Behaviour

The transition system is the central notion in the mathesabtheory of discrete-event behaviour. It is
parameterised by a sét of action symbolsdenoting the observable events of a system. We shall later
impose extra restrictions oA, e.g., requiring that it be finite or have a particular stuoet but for now

we letA be just an arbitrary abstract set. We extefigvith a special symbat, which intuitively denotes
unobservable internal activity of the system. We shall eblate AU {7} by A-.

Definition 1 (Labelled Transition System)An A.-labelled transition systeri is a triple (S,—,1),
where,

1. Sis a set ofstates
2. — C Sx A, xS is anA,-labelledtransition relationIf (s,a,t) € —, we write S5t

3. T e Sis the initial state.
Let (S,—, 1) be an#A.-labelled LTS; we define the set of reachable states fromta stes follows.

Reaclis) = {§ € S| N> 03s0,.... S €S, a1,.... 80 €A S= S —5 - 5 g, = &) .

Transition systems can be used to give semantics to progragrianguages and process calculi. The
standard method is to first associate with every program @rgss expression a transition system (its
operational semantics), and then consider programs arggsexpressions modulo one of the many
behavioural equivalences on transition systems that hege btudied in the literature. In this paper,
we shall use the notion of (divergence-preserving) bramghuisimilarity [9,[11], which is the finest
behavioural equivalence from van Glabbeek’s linear timeanbhing time spectruna [10].

In the definition of (divergence-preserving) branchingrbiirity we need the following notation:

let — be anA.-labelled transition relation on a s&t and leta € A,; we Writesﬂ t for “s—wt or
a=rands=t". Furthermore, we denote the transitive closure-ef by —* and the reflexive-transitive
closure of— by —".

Definition 2 (Branching Bisimilarity) Let Ty = (S1,—1,T1) and T, = (S2,—2, T2) be transition sys-
tems. Abranching bisimulatiofirom Ty to T is a binary relationR € S1 x S, such that for all states;s
and 9, Si1Rs, implies

1. ifg i>1 s;, then there exist’ss; € S, such that 55— s) ﬂ S, SIRS; and §Rs;

2. ifs iz S, then there exist;ss;’ € Sy, such that $—1 s/ ﬂ S}, SRS and §RS,.
The transition systems; Bnd T, are branching bisimilafnotation: T; £, T») if there exists a branching
bisimulation®R from Ty to T2 s.t. T1 R T2.
A branching bisimulatiorg from T to T, is divergence-preservinifj for all states g and $, SRS
implies
3. ifthere exists an infinite sequen@g;)ici such that = s10, Sy ELIN Spi+1 and giRs foralli e N,
then there exists a statg such that 5—" s, and §;Rs, for some i N; and

4. if there exists an infinite sequeng;)icy Such that 8= S0, S; LN Si+1and RSy foralli e N,
then there exists a staté such that §— " s; and §Rs,; for some ke N.

The transition systems; Bnd T, are divergence-preserving branching bisimi(aotation: T, <:>§ To) if
there exists a divergence-preserving branching bisinmutak from T; to T, such that? R T».
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For two LTSsT; = (S1,—1,T1) andTo = (S2,—2,T2), St € S1and s, € Sy, we write s €4 S
(51 <:>§ s) if there is a (divergence-preserving) branching bisintifafrom T4 to T, relatings; and s,.
Thus, <y, is a relation from the states 0f to the states oT,, and it can be shown that it satisfies the
conditions of Definitiod 2. We can also writg ©p $ (5 <:>§ $) if 5 ands, are states in a single LTS
T and related by a (divergence-preserving) branching bisitionn fromT to itself.

The relations=y, and <:>§ are equivalence relations, both as relations on a singhsitian system,
and as relations on a set of transition systéms [4, 11].

Next we define the notion of bisimulation up4g,. Note that we adapt a non-symmetric bisimulation
up to relation, which is a useful tool to establish the prawfs>y, later.

Definition 3. Let T; = (S1,—1,T1) and T = (S»,—2, T2) be two transition systems. A relatighc
S1 xSy is a bisimulation up tazy, if, whenever g8rs,, then for all ac A;:

1. ifgg —" s/ L s, With § © s and a# 7V s £y s, then there exists,ssuch that §—a> S,
s{ ©poR 2 and § ©poR s,; and

2. ifs 2, S,, then there existss;" such that g—" s/ 2, s, S Spsrand § £poR' S,
Lemma 1. If R is a bisimulation up ta2y, thenR C <y,

2.1 Executable behaviour

The notion of reactive Turing machine (RTM) was put forwand3] to mathematically characterise
which behaviour is executable by a conventional computysgesn. In this section, we recall the def-
inition of RTMs and the ensued notion of executable tramsisystem. The definition of RTMs is pa-
rameterised with the sefl,, which we now assume to be a finite set. Furthermore, the tefins
parameterised with another finite $8tof data symbolsWe extendD with a special symbat ¢ D to
denote a blank tape cell, and denote thefdet{o} of tape symboldy Dp.

Definition 4 (Reactive Turing Machine)A reactive Turing machinéRTM) M is a triple (S,—., 1),
where

1. Sis afinite set ofstates

2. 5 CSX Dy XA XDy x{L,R} x 8§ is a finite collection of(Dg x A, x Dy x {L,R})-labelled
transition rulegwe write sa[ﬁM t for (s,d,a,e, M,t) € —),

3. T e Sis adistinguishednitial state

Remark 1. The original definition of RTMs iri [3] includes an extra fatilto declare a subset of the
states of an RTM as being final states, and so does the assbciation of executable transition system.
In this paper, however, our goal is to explore the relatiapdbetween the transition systems associated
with RTMs and those that can be specified insthealculus. Since the-calculus does not include the
facility to specify that a state has the option to terminate,leave it out from the definition of RTMs too.

. _ .. ald/gM . . .
Intuitively, the meaning of a transmossla[ﬂ tis that wheneveM is in states, andd is the symbol

currently read by the tape head, then it may execute thenegtiorite symbole on the tape (replacind),
move the reatvrite head one position to the left or the right on the tapgédeling on whethel = L
or M = R), and then end up in state

To formalise the intuitive understanding of the operatidiehaviour of RTMs, we associate with
every RTM M an A.-labelled transition syste (M). The states of (M) are the configurations of
M, which consist of a state froifi, its tape contents, and the position of the yeade head. We denote
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by Dy = {d | d € Dy} the set ofmarkedsymbols; atape instancds a sequencé € (Dg U Dg)* such
that§ contains exactly one element of., indicating the position of the reparite head. We adopt a
convention to concisely denote new placement of the tape imaaker. Le® be an element aD. Then

by 6 we denote the element abx Uzig)* obtained by placing the tape head marker on the right-most
symbol of§ (if it exists), andt otherwise. Similarlys is obtained by placing the tape head marker on
the left-most symbol of (if it exists), andd otherwise.

Definition 5. Let M = (S,—, 1) be an RTM. Théransition systenT (M) associated witbM is defined
as follows:

1. its set of states is the 3@, = {(S,0) | s€ S, § a tape instancgof all configurations ofM;

2. its transition relation— C C (X A X C 4 is the least relation satisfying, for allaA,, d,ee€ Dy
andé,or e Dy:

“ . d/elL
o (50L00R) -5 (6.6 eoR) iff s 3" t, and

« _ d/eR
o (S6.d0R) — (t,6.€76R) Ujfsa[ﬂ t, and
3. its initial state is the configuratio(f, o).

Turing introduced his machines to define the notiomfféctively computable functiorBy analogy,
the notion of RTM can be used to define a notiorggictively executable behaviour

Definition 6 (Executability) A transition system igxecutabldf it is the transition system associated
with some RTM.

Usually, we shall be interested in executability up to somleavioural equivalence. 10][3], a char-
acterisation of executability up to (divergence-presagyibranching bisimilarity is given that is inde-
pendent of the notion of RTM. In order to be able to recapieutae results below, we need the follow-
ing definitions, pertaining to the recursive complexity dmenching degree of transition systems. Let
T =(8S,—,1) be a transition system. We say thais effectiveif — is a recursively enumerable set.
The mappingut: S — 2%*S associates with every state its set of outgoing transitioas for allse S,

out(s) = {(a,t) | s t}. We say thafl is computabléf outis a recursive function. We call a transition
systentinitely branchingf out(s) is finite for every state, andboundedly branching there existB e N
such thatout(s)| < Bfor all se S.

The following results were established [in [3].

Theorem 1. 1. The transition system (M) associated with an RTM is computable and bound-
edly branching.

2. For every finite sef, and every boundedly branching computal#le-labelled transition system
T, there exists an RTM such that Top 7/ (M).

3. For every finite se#l, and every gectiveA.-labelled transition system T there exists an RAMV
such that Tep 7 (M).

Notice the role played by divergence preservation in thequimg theorem. Divergence can be
used to simulate the behaviour in a state with a high bragctiégree using states with lower branch-
ing degrees; the idea stems frdm [1] and is generalised nt@lFrove that every fective A,-labelled
transition system is weakly bisimilar to a computable titams system. We proceed to discuss a crite-
rion to decide whether a transition systdm= (S,—, 1) is not executable up to divergence-preserving
branching bisimilarity, which is based on the notion of lmsing degree up tojﬁ. Let us denote the
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equivalence class afe S modulo© by [Slop = (s €S| sep s'}. Thebranching degreeip to <} of
s, denoted b>deg_,§(s), is defined as the cardinality of the set

{(a,[s’]<:)€)|35”.s—>* g5 9&sols &(a=Tr = ' L)} .

The branching degree moduﬁﬁ of T is the least upper bound of the branching degrees of all reach
able states, which is defined aeg_,ﬁ(T) = sugde%ﬁ(s) | se ReacliT)}. We say thafl is boundedly

branchingup to<:>§ if there existB e N, such thableg:g(T) < B, otherwise it isinboundedly branching
up toep.
Lemma 2. If s t, then deg,(s) = deg,a(t).

A divergence(up to <:>€) in a transition system is an infinite sequence of reachdbtess;, s, ...

such thats LN S SR ands <:>§ sj for all i, j e N. The following lemma shows that, in the absence
of a divergence, boundedly branching transition system$aundedly branching up tgﬁ.

Lemma 3. If a transition system is boundedly branching and does nueldivergence up t0_+€, then
it is boundedly branching up te>(.

Thus we conclude the following theorem from Theofdm 1(1) lagehma3.

Theorem 2. If a transition system T has no divergence up;t@ and is unboundedly branching up to
o, then it is not executable modute;.

2.2 m-Calculus

The n-calculus was proposed by Milner, Parrow and Walkef in [16adanguage to specify processes
with link mobility. The expressiveness of many variantstod #-calculus has been extensively studied.
In this paper, we shall consider the basic version present§@8], excluding the match prefix. We
recapitulate some definitions from [18] below and refer ®hbok for detailed explanations.

We presuppose a countably infinite 9étof names; we use strings of lower case letters for ele-
ments of V. Theprefixes processesndsummation®f the z-calculus are, respectively, defined by the
following grammar:

Tn=Xy | x@ |7 (XY.ZEN)
P:=M|PIP|@P]|!P
M:=0]|aP| M+M .

In x(2).P and @)P, the displayed occurrence of the namis bindingwith scopeP. An occurrence of
a name in a processlmundif it is, or lies within the scope of, a binding occurrencePnotherwise it is
free. We usdn(P) to denote the set of names that occur fre®@,jmndbn(P) to denote the set of names
that occur bound .

An a-conversion between-terms is defined in [18] as a finite number of changes of bowamdes.
In this paper, we do not distinguish amomgerms that arer-convertible, and we writ® = Q if P and
Q area-convertible.

We define the operational behaviourmeprocesses by means of the structural operational seraantic
in Fig.[, in whicha ranges over the set of actions of thealculus

Az = (XY, XY, X(2) | Xy, ze NYU (T} .
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PREFIX _ _ _
.P—P xy.p 2 p x(y).P — P{z/y}
SUM, P— f PAR. P — P bn(e) Nfn(Q) = 0
(P+Q) — P PIQ— P |Q
Xy Xy X(@ Xz
P2 p, / P b /
CoM, — Q™ closy — Q™ it
PIQ-5P |Q PIQ-5 QP 1Q)
a , Xz ,
RES — =2 7¢0 OPEN —22 74«
P — P P2 p
P P p.p 2 pr P p p2p
REP Pa_> P - ’ - )
PSP IP IPSPIP)|IP P @ | PP

Figure 1: Operational rules for thecalculus

The rules in FiglIl define omterms anA,-labelled transition relatior—. Then, we can associate
with everyn-termP anA,-labelled transition system(P) = (Sp,—p, P). The set of stateSp of 7 (P)
consists of all-terms reachable fror, the transition relatior—p of 7 (P) is obtained by restricting the
transition relation— defined by the structural operational rulesSio(i.e.,—p = — N (Sp X A, X Sp)),
and the initial state of (P) is thez-termP.

For convenience, we sometimes want to abbreviate interacthat involve the transmission of no
name at all, or more than one name. Instead of giving a fuittnent of the polyadia-calculus (see
[18]), we define the following abbreviations:

X1, -, Ye). P & W)Xy - Wy P (w ¢ fn(P)), and

X(z1,...,2,).P d:efx(w).w(zl).---w(zq).P .

The following lemma establishes that divergence-preagrldranching bisimilarity is compatible
with restriction and parallel composition. This will be afid property when establishing the correctness
of our simulation of RTMs in ther-calculus, in the next section.

Lemma 4. For all n-terms P, P, Q, and Q:
1. if Pef P, then(a)P < (A)P';
2. it P2 P'and Q) Q' then PLQ ) P | Q.

3 Specifying Executable Behaviour in ther-Calculus

In the previous section, we have introducedthealculus as a language to specify behaviour of systems
with link mobility, and we have proposed RTMs to define a notibexecutable behaviour. In this section
we prove that every executable behaviour can be specifigwtintalculus up to divergence-preserving
branching bisimilarity. To this end, we associate with gvBTM M a n-term P that simulates the
behaviour ofM up to divergence-preserving branching bisimilarity, tisa? (M) <:>€ 7 (P).
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read| | write, left, right

m-1=Im M =11

Figure 2: Specification of an RTM utilizing the linking sttuce of ther-calculus

The structure of our specification is illustrated in Figltel@ this figure, each node represents a
parallel component of the specification, each labelledvastands for a communication channel with
certain labels, and the dashed lines represent the linkeketcells. Moreover, the equalities on arrows
and dashed lines tell the correspondence between the nafimescdin the linked terms. The specification
consists of a generic finite specification of the behavioua ¢tdpe (parallel componentsy, Bk, Cy,
B« in Figure[2), and a finite specification of a control proces th specific for the RTMM under
consideration (parallel compone®tin Figure2). We first discuss the generic specification otdpe in
Sectior 3.1, then we discuss how to add a suitable contrekpsospecific foM in Sectiori 3.2 proving
that M is simulated by the parallel composition of the two parts.

3.1 Tape

In [1], the behaviour of the tape of a Turing machine is fipitsbecified in ACR making use of finite
specifications of two stacks. The specification is not easibdified to take intermediate termination
into account, and therefore, in [3], an alternative solutipresented, specifying the behaviour of a tape
in TCP; by using a finite specification of a queue (see dlso [2]). Ia gaper, we will exploit the link
passing feature of the-calculus to give a more direct specification. In particulae shall model the
tape as a collection of cells endowed with a link structueg tiiganises them in a linear fashion.

We first give an informal description of the behaviour of estaphe state of a tape is characterised by
a tape instancé, dsr, consisting of a finite (but unbounded) sequence of data tivélcurrent position
of the tape head indicated by ~. The tape may then exhibitali@fing observable actions:

1. readd the datum under the tape head is output along the chaeae|

2. write(e): a datume is written on the position of the tape head, resulting in a rtegpe instance
5L‘®R; and

3. left, right: the tape head moves one position left or right, resulting, idég or 6, d*6R, respec-
tively.

Henceforth, we assume that tape symbols are included irettef sames, i.e., thad, C N.

In our r-calculus specification of a tape, each individual tapeisedpecified as a separate compo-
nent, and there is a separate component modelling the tape A¢ape cell stores a datuwhrepresented
by a free name in the specification, and it has pointensdr to its left and right neighbour cells. Fur-
thermore, it has two links to the component modelling the tiapad: the linki is used by the tape head
for updating the datum, and the linlserves as a general communication channel for commuricaliin
relevant information about the cell to the tape head. THevahg n-term represents the behaviour of a



Bas Luttik & Fei Yang 9

tape cell:

c % olr,u.d).Ctlr,ud)

celrnud) % uestlrue).0+irudystlrud).0 .

Note that the behaviour of an individual tape ¢@{t,l,r,u,d) is as follows: either it receives along
channelu an updatee for its datumd, after which it recreates itself with datumin place ofd; or it
outputs all relevant information about itself (i.e., thekk to its left and right neighbours, its update
channelu, and the stored datund) to the tape head along channghfter which it recreates itself. A cell
is created by a synchronisation on nacney which all relevant information about the cell is passed;
shall have a componenCifacilitate the generation of new incarnations of existiage cells.

At any moment, the number of tape cells will be finite. To matiel unbounded nature of the tape,
we define a procesB that serves to generate new blank tape cells on either sitteedfpe whenever
needed:

B %" bit,r).(u)Bit,1r, u)+ by (t.1).(u,r)Br (¢, 1,1, U)
Bit.lru) %" KL ru o).t r,u,o).0] B, t).0)
B(t,l,r,u) E ¥l,r,u0).@Etlru0.0|brt,r).0) .

Note thatB offers the choice to either create a blank tape cell at the &ftiiside of the tape through
Bi(t,1,r,u), or a blank tape cell at the right-hand side of the tape tjinds; (t,1,r,u). In the first case,
suppose the original leftmost cell has the chantedsdl,, for itself and its left neighbour, respectively,
then for the new cell, we haue= |, andr =t,, in order to maintain the links to its neighbour. Moreover,
at the creation of the new blank cell, two new links are wilizu is the update channel of the new
blank cell, and will later be used as the link to generate another cell. Thusmacell is generated from
T(t,l,r,u,0).0, and the cell generator on the left is updated?kz&t).o. In the second case, a symmetrical
procedure is implemented B¢(t,1,r,u).

Throughout the simulation of an RTM, the number of paralt@hponents modelling individual tape
cells will grow. We shall presuppose a numbering of thesalfgiicomponents with consecutive integers
from some intervalrp,n] (m andn are integers such that < n), in agreement with the link structure.
The numbering is reflected by a naming scheme that adds tisersuth to the linkst, I, r, u andd of
theith cell. We abbreviat€(t;, I, ri, ui,d;) by Ci(d;), andB(t;, i, ri, u;) andBy(ti, li,ri, u;) by By; and By,
respectively. LeUT[mn] = dm, dms1, - - ., dn=1, dn; we define:

7 def
C('Z‘IIS{m,n] (d[m,n]) = (bl,br,c)(BI,m—l | Cm(dm) | Cm+1(dm+1) [ Cn—l(dn—l) | Cn(dn) | Br,n+1 ['C] !B) .

The component modelling the tape head serves as the irgdréween the tape cells and the RTM-
specific control process. It is defined as:

H = htlrud).H({lru,d)
HtLnud) % teaddhdtl,r,u, d).0+write(e).ueht,l,r,u,e).0
+ leftl(l’,r’, v, d).KLI v, d').0
+ rightr(’,r’,u,d).hr, 1,0, d).0 .

The tape head maintains two links to the current cell (a conication channet and an update
channelu), as well as links to its left and right neighbour cell@(dr, respectively). Furthermore, the



10 Executable Behaviour and theCalculus

tape head remembers the datdin the current cell. The datuchmay be output along thread-channel.
Furthermore, a new datuemay be received through therite-channel, which is then forwarded through
the update channeito the current cell. Finally, the tape head may receive uiesimns to move left or
right, which has theféect of receiving information about the left or right neighi® of the current cell
throughl or r, respectively. In all cases, a new incarnation of the tapel e started, with a call on the
h-channel.

Lettfmn] =tm, tre 1, - - -» the1, tn, @NAGm A = Um, Umee1, .- -, Un-1, Un. Furthermore, led; = H(t, I, ri, u;, d;),

and we define,
Tapd,, o (Tima) € Em-1ne13. G ()(H | H) | Cellgmag (Tmey)) -

Lemma 5. Suppose CBjm, By n, Hi are as defined before, then the following statements ard:vali

1. (Ot li,ri,ui,¢).0|IC) 2f (©)(Ci(dh) | IC)

2. (b1, br) (b (tm, 'm).0 | 1B) <2 (b1, by, U, Im) (Bi.m | ! B)

3. (br.br) (b (tn, 10).0 [ 1B) 5 (by, by, Un, 1) (B | ! B)

4. ()¢t li,ri,ui, 6.0 [ TH) <f (h)(Hi [ 1H)

We shall writeP —a><:>€ P’ for “there is aP” such tha — P” andP” op P
Lemma 6. There are four types of transitions from T%Qﬁ (cT[mn]):

. feadd o

write(e)

2. Tap(%mn] (dimn) — €5 Tap%m’n] (dimi-15-& djis1n));
3. Tap(%mn] (chma) E’ﬁé Tap%;%n] (i) (if i > m);

Tapé[mn] (dme) E’gé Tapékil,n](m’(j?mn]) (ifi =m);
4 Tap‘%mn] (chma) @}96 Tap%;%n] (dimm) (if i < );

: - right i 7 s
Tape,, 1 ([dimn) —<p Tapert 1 (cimn.0) (if i = n).

3.2 Finite control

We associate with every RTM = (Sy, — m. Tm) a finite specification of its control process. Haene

can be eitheleft or right.
s € 3 s> dSa
SeSpm deDy

Seq & Z awriteemreadf).t.f.0
(sd.aemt)e—

LetS=151,%,...,Sn€Sp, andEé=ey, e, ...,6, € Dg; we define

Controlsg s &)(Ssd l!S) .

The following lemma illustrates the behaviour of the cohpnmcess.



Bas Luttik & Fei Yang 11

Lemma 7. Given an RTMM = (Sy, — m, Tm), we have the following transition sequence:

— o writee m read f
Controls g 4, (S, 8 (writeem.readf).t.f.0|!S) wiiee =8 <:>€ Controk 1.0 .

if and only if there is a transition rulés,d,a,e,m,t) e— .

Finally, for a given RTMM, we associate with every configuratioaé(Ld(SR) an-term Mg, dsqr
consisting of a parallel composition of the specificatiohgt®tape instance and control process. Let
r’ = read write, left, right; we define

Mg s, ds, = (P)(Controlsg |Tap%mn] (dimnp)) Wheredim g = 6.doR -

The following lemma shows thal_ ; 45 actually simulates every computation step of an RTM.

Lemma 8. Given an RTMM = (S, — . Tm), for every configuratior(s,(SdeR), its specification
Mg, dss Nas the following transition

a

A
. s> .
MS,5Ld5R —b Mt,ﬁf_fﬁ& ’

if and only if there is a transitioms,o“Ld(SR) 4, (t,o] fV(S’R).
Theorem 3. Given an RTMM, we have

T (M) €5 TM) .

Thus we have the following expressiveness result forrticalculus.
Corollary 1. For every executable transition system T there existderm P, such that 'Fjﬁ 7 (P).

4 Executability of the z-Calculus

We have proved that every executable behaviour can be sEknifther-calculus modulo divergence-
preserving branching bisimilarity. We shall now investe&géo what extent behaviour specified in the
n-calculus is executable. Recall that we have defined exeleuiteehaviour as behaviour of an RTM. So,
in order to prove that the behaviour specified laytarm is executable, we need to show that the transition
system associated with thisterm is behaviourally equivalent to the transition sys&saociated with
some RTM.

Note that there is an apparent mismatch between the formsleg RTMs and ther-calculus. On
the one hand, the notion of RTM as we have defined in Sectioefupposefinite setsA, and D of
actions and data symbols, and also the transition relafian &TM isfinite. As a consequence, we have
observed, the transition system associated with an RTMitglffroranching, and, in fact, its branching
degree is bounded by a natural number. (Note that this ddesesn that RTMs cannot deal with data of
unbounded size; it only means that it has to be encoded usiibgfimany symbols.) The-calculus, on
the other hand, presupposes an infinite set of names by whitffinite set of actionsA, is generated.
Furthermore, the transition system associated witkterm by the structural operational semantics (see
Fig.[D) may contain states with an infinite branching degdee, to the rules for input prefix and bound
output prefix. Regarding this gap, we shall explore two waysstablish simulation of-calculus terms
by RTMs. One is to extend the formalism of RTMs to presupposifinite set of actions, and the other
is to restrict ther-calculus to use a finite set of names.
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4.1 RTMs with Infinitely Many Actions

Let us first consider allowing RTMs to have infinitely manyiaws in order to accommodate for the
infinitely many names in the-calculus.

Recall Definition #, an RTM has a finite set of statesnd a finite set of transition rules defining
the associated transition relation. If we allow RTMs to hiafitely many actions, then, inevitably, we
should also allow them to have infinitely many transitioresul The following lemma shows that we then
also either need infinitely many states or infinitely manyadatmbols.

Lemma 9. There does not exist an RTM with infinitely many actions bitefhmany states and data
symbols that simulates theterm P= x(y).y.0 modulo branching bisimilarity.

Now, assume we allow the alphabet of data symbols to be iafitiitis then straightforward to use
it to encode an infinite set of control states. Allowing annité set of data symbols, in fact, greatly
enhances the expressiveness of RTMs, as the followingeheshows.

Theorem 4. Every infinitely branching fgective transition system can be simulated up to divergence-
preserving branching bisimilarity by an RTM with infiniteesef action symbols and data symbols.

As a consequence, we can simulate evegalculus term up to divergence-preserving branching
bisimilarity with an RTM having infinite sets of action synmbaand data symbols. So, if we would
extend the formalism of RTMs allowing infinitely many actispmbols and data symbols and define the
notion of executability on the basis of it, then we would d&ttteveryr-calculus process is executable
up to divergence-preserving branching bisimilarity. Onaynargue, however, that such extension is
not in accordance with reality, referring to the finitenessealistic computing systems. Actually, this
result only shows the existence of such theoretical modatlser than giving a way of implementation.
Moreover, the conclusion is valid for every model with dfeetive operational semantics, even if it has
infinite branching.

4.2 Restricting thenr-calculus

Now we proceed to consider the other option, which is to pseprestriction on the transition systems
associated withr-terms such that they refer only to finitely many actions.

The infinity of the set of actions in the-calculus arises in two ways, the free input names and
the bound output names. The free input names allow a prooesscéive any potential input from
the environment and the bound output names give a procesility to generate unboundedly many
distinct private channels to communicate with other preess For both purposes, infinite branching
of the transition system is essential. Observe, that thaitefbranching caused by input prefix can
be thought of as a technical device in the operational seosatd model the communication of an
arbitrary name from one parallel component to another. Tdraenthat will be received, can either
be a free name of the sending process (a value), or a redtnetee (a private channel). Since the
sending parallel component will only have a finite numberreéfnames, only finitely many values can
be communicated. Although, technically speaking, acogrdo the operational semantics, infinitely
many distinct private channels may be communicated whemgurt prefix synchronises with a bound
output prefix, the communicated private channel is not olagde, and the resulting-terms are all
equated byr-conversion, so the only observabl@eet of the interaction is that after the communication
the sending and receiving parties share a private channéhich the name is irrelevant.

Our goal is to investigate to what extent the behaviour $igeldby an individual-term is executable.
Motivated by the above intuitive interpretation of intefan of ax-term with its environment, we assume
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that the behaviour specified by thaterm is executed in an environment that mégodata values from
some presupposed finite set on its input channels. This ggEumseems reasonable as a machine should
know in advance which symbols to expect as an input. Furtbernwe assume that there is a facility
for establishing a private channel betweenstkiierm and its environment. (Such a facility could, e.g., be
implemented using encryption, but we will abstract from #lctual implementation of the facility.) We
define a restriction on the transition systems associatdtnterms that is based on these assumptions.

Definition 7. Let N’ C N be a set of names, |, = A, - ({xy| x,ye N, y¢ N'}U{X(2) | x,.ze N}), and
let P be ar-term. The transition system associated with P restrictet, denoted by (P) | N/, is a
triple (Sp [ N’,—p ! N’,P), obtained froni (P) = (Sp, —p, P) as follows:

1. Sp I N’ is the set of states reachable from P by means of transitioaisare not labelled by xy
(ye N); and

2. —p| N’ is the restriction of—p obtained by excluding all transitions labelled with xyZyv’),
and relabelling all transitions labelled witk(2) (x,ze N) to vX, i.e.,

X2

—pI N =(—pN(Sp I N' x A xSp | N))U{(svX,1)|steSp I N',s—pt} .

Using [18, Lemma 1.4.1], it is straightforward to show that éveryz-term the set of actions of the
n-calculus appearing as labelsi(P) I N is finite. Furthermore, the transition system associatei avi
n-term by the operational semantics, and also its restrieazording to Definitionl7 are clearlyfective.
Hence, as animmediate corollary of Theotdm 1(3), we mayludechat the transition system associated
with an-term can be simulated by an RTM modulo (divergence-ingigagibranching bisimilarity.

Corollary 2. For every closedr-term P, and for every finite set of input nam€sC N, there exists an
RTM M such that (P) | N’ €, T (M).

The following example shows that there exisierms with which the structural operational semantics
associates a transition system without divergence thatbhswndedly branching up l‘Qé. Note that by
Theoreni 2 such-terms are not executable modulo divergence-preserviagching bisimilarity.

Example 1. Consider ther-process Fgﬁf(c,i,d,s,flip)(TlefIip.0| IC|!l'|!'D), with C, | and D defined
as follows:

c L' oht b).(ht,b).0+flip.Eh.t, 1).0)

I " i(h).(inc.(h)e(h', h, 0).ih.0+ flushflip.d h.O)
D %" d(h).(ht,b)b.dt.0)

Intuitively, the proces$C facilitates the generation of a linked list of one-bit selith a pointer h
to the head of the list, a pointer t to the tail of the list, antlibb. Each cell may either output, along h,
the link t to the tail of the list and its bit b, or it may receitkee instruction flip after which it recreates
itself with the valuel. The process | serves as the interface process. It maingalimk to the head of
the list. Upon receiving an inc-instruction, it adds anatlbee-bit cell to the list, and upon receiving the
flush-instruction, it flips at most one of the bits, and theltsda. The process D then simply outputs the
bits in reverse sequence.

Consider the state reached after performing n inc-actidobowed by a flush-action. In this state,
the list contains a string of Bs. Ther-transitions that correspond to the interaction ftip between
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I and one of the flips of one of the one-bit cells or flip in therdédin of P have the fect of non-
deterministically changing (at most) one of t®to al. Note that there are s 1 suchr-transitions,
and since D will subsequently output the sequence in ortlerstates reached by thesdransitions
are (pairwise) not divergence-preserving branching biim Hence, it follows that for every n, the
transition system associated with P has a reachable stdteanbranching degree modufgﬁ of at least
n+ 1. It follows that the transition system associated with Prisaundedly branching up t@@.

Note that the only names occurring as part of the labels otrémsitions in the transition system
associated with the-term P in the preceding example afe 1, inc andflush so if N contains at least
these four names, thdnsatisfies7 (P) | N’ = 7(P). Let us say, in general, thataterm P hasfinitely
many observable namésthere exists a finite sew’ € N such that7 (P) | N’ = 7 (P). Note that, in
this case P cannot have parameterised free inputs, nor bound outpuisz-terms with finitely many
observable names, we have the following corollary as a cpesee of a combination of Corollay 2
and Examplé&]1.

Corollary 3. Every closedr-term P with finitely many observable names is executable (givergence-
insensitive) branching bisimilarity, but there exist @dsr-terms with finitely many observable names
that are not executable up to divergence-preserving braagchisimilarity.

Our notion of restriction is introduced to restrict labdlligansition systems associated wittterms
to finitely many names. Alternatively, we could define a fingesionsrs, of thes-calculus, presupposing
afinite set of namegv right from the beginning. 1§ (P) is the labelled transition system associated with
P according to the operational semanticstgf, then7 (P) I NV is obtained fron? (P) by replacing all
transitions with the labek(z) by transitions with the labelx. Apart from this modification, restriction
keeps all observable behaviour.

5 Conclusions and Related Work

We have investigated the expressiveness ofrtialculus in relation to the theory of executability pro-
vided by reactive Turing machines. The issue of the expressss of ther-calculus has been exten-
sively studied (see [12] for a comprehensive overview oféaesh in this area). A distinction is usually
made between absolute and relative expressiveness rédudtabsolute expressiveness results focus on
proving the (im)possibility of expressing a computatiopgénomenon in a calculus; the relative expres-
siveness results are mostly about encoding one calculusoither. Our results pertain to the absolute
expressiveness of thecalculus.

We have established that, up to divergence-preservingbigbisimilarity, every executable transi-
tion system can be specified in thecalculus, showing that the-calculus is reactively Turing powerful.
Milner already established in[14] that thecalculus is Turing powerful, by exhibiting an encoding of
the A-calculus in ther-calculus by which every reduction in thecalculus is simulated by a sequence of
reductions in ther-calculus. Our result that all executable behaviour carpbeified in ther-calculus up
to divergence-preserving branching bisimilarity also iegpthat ther-calculus is Turing powerful, and
thus it subsumes Milner’s result. Similarly, inl [5] seveeapressiveness results for variants of CCS are
obtained via an encoding of Random Access Machines, andlase results only make claims about
the computational expressiveness of the calculi. Notiaéttie results in[14] and [5] confirm the com-
putational power of the respective calculi, but do not makgialitative statement about its interactive
expressiveness. By showing that reactive Turing machiaasbe faithfully simulated, we at the same
time confirm the interactive expressiveness ofsthmalculus.
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In his recent work[[[7], Fu also proposes to study computadiod interaction in an integrated the-
ory. His theory is built on four fundamental principles,hat than on a machine model. One of the
contributions of his theory is a calculus including a bar@imum of primitives to be computationally
and interactively complete, and he uses it to confirm the detapess of the-calculus. We leave it for
future work to explore the relationship between Fu’s thamftinteraction and the theory of executability
based on reactive Turing machines.

We have observed that it is possible to specify behaviounémricalculus that is not executable up
to any reasonable notion of behavioural equivalence, gitngtause it uses infinitely many observable
names. For the presentation of thealculus it is technically important to presuppose an itdiset of
names especially to model the feature of dynamic creatiq@miwdte channels between components. In a
real system, however, private channels between compomanytbe implemented fierently, e.g., using
some form of encryption. We have shown that a behaviour Bpédn then-calculus is executable up
to the divergence-insensitive variant of branching biknty if one restricts to finitely many observable
names and does not associate a unique identifier with evelgnaigally created private channel.

It has been claimed (e.g., in![6]) that tlecalculus provides a model of computation that is be-
haviourally more expressive than Turing machines. Ourliegrovide further justification for this
claim, and characterise thefldirence. It should be noted that th&elience in expressive power is at the
level of interaction (allowing interaction between an unbded number of components), rather than at
the level of computation.
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