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Labelled Transition Systems (LTSs) are a fundamental semantic model in many areas of informatics,
especially concurrency theory. Yet, reasoning on LTSs and relations between their states can be
difficult and elusive: very simple process algebra terms can give rise to a large (possibly infinite)
number of intricate transitions and interactions. To ease this kind of study, we present LTSwb, a
flexible and extensible LTS toolbox: this tutorial paper discusses its design and functionalities.

1 Introduction

LTSwb (from “LTS WorkBench”) [14] is a Labelled Transition System (LTS) toolbox, allowing to define
LTSs and processes, manipulate them, and compute relations between their states. Its main features are:
genericity. LTSwb does not require LTSs and processes to have specific state/label types. This allows

to semantically reason on different process specifications: for example, it allows to study whether
a CCS process [12] is a semantic refinement of a session type [10] (as in [1]), or whether it can
correctly interact with a service whose specification is a Communicating Finite-State Machine
(CFSM) [2];

laziness. Very large, and even infinite-state LTSs and processes are managed transparently: states and
transitions are only generated upon request. This allows to mitigate state space explosion problems,
and to explore and filter out (finite) parts of infinite LTSs arising e.g. with recursion, parallelism,
unbounded communication buffers, etc.

LTSwb is a Scala [13] library. The choice of Scala is motivated by the desire of a functional pro-
gramming language with an advanced type system, and the possibility of accessing the vast landscape
of libraries available on the Java VM; moreover, Scala’s lazy values allow for some controlled lazy
evaluation in an otherwise eager language — a mix which we found helpful for our implementation.
LTSwb can be used directly on the interactive Scala console: unless otherwise noted, all the examples on
this paper can be replicated therein via simple cut&pasting.

2 LTSs, processes and asynchrony
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Figure 2.1: Output of (l1 ||| l2).toDot.

An LTS is a triple (Σ,Λ,R) where Σ is the set of states, Λ

is the set of labels, and R ⊆ (Σ× (Λ×Σ)) is the transition
relation. A process is a pair (L,σ ) where L is an LTS and σ

is one of its states. The process transition (L,σ)
`−→ (L,σ ′)

holds iff (σ ,(`,σ ′)) is in the transition relation of L.
In the following sections, we show several ways in which

LTSwb processes can be created (by extracting them from
some LTS) and manipulated.
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2.1 From LTSs to processes

In LTSwb, a finite LTS can be defined with the LTS constructor, by enumerating the state-(label-state)
triples which compose its transition relation. For example:

val l1 = LTS(List((0, ("+", 1)), (1, ("+", 2)), (2, ("+", 3)), (2, ("-", 1))))

val l2 = LTS(List(("p1", ("!a", "p2")), ("p2", ("?b", "p3")), ("p2", ("?c", "p1"))))

The types of l1 and l2 are (respectively) FiniteLTS[Int,String] and FiniteLTS[String,String]:
i.e., they are finite-state, finite-branching LTSs where states are Integers (resp. Strings), and labels
are Strings. The methods l1.toDot and l2.toDot return their graphs (shown on the left). The
||| operator on LTSs returns the LTS whose states correspond to the parallel composition of its
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arguments’ states, provided that the labels have the same type:
Figure 2.1 shows the diagram of (l1 ||| l2).toDot. Such
a composition is performed lazily, thus avoiding (or delaying)

state space explosion problems: the actual combinations of LTS states are generated only upon request.
A process can be simply retrieved from an LTS through one of its states. For example:

val p1 = l2.process("p1")

In this case, we have that p1 has type FiniteProcess[String,String] (i.e., a finite-state, finite-branching
process where states are Strings, and labels are Strings as well). As one might expect, p1.state has
indeed value "p1". Moreover, p1.lts is l2 — i.e., the LTS inhabited by p1.

A process can be queried for its enabled transitions. In our example, p1.transitions has type
FiniteSet[String], and value Set("!a"). We can now let:

val p1a = p1("!a"); val p2 = p1a.iterator.next

where p1a is the FiniteSet of processes reachable from p1 via transition "!a". In our example, p1a
contains a single element, i.e. the process corresponding to state "p2" of l2: such a process is retrieved
via p1a’s iterator1, and assigned to p2. As expected, p2.transitions has value Set("?b","?c").

Processes can be composed in parallel, similarly to LTSs (as shown above). Let:

val p01 = l1.process(0) ||| p1

p10 has type FiniteProcess[(Int,String),String] (i.e., each state is a pair of (Int,String), while
labels remain Strings). The transitions of p01 are those of the LTS state (0,p1) in Figure 2.1: indeed, the
same process could have been extracted with (l1 ||| l2).process((0,"p1")), and p01.lts is l1 ||| l2.

2.2 CCS processes

LTSwb implements CCS, which is the infinite LTS whose states are CCSTerms, labels are CCSPrefixes, and
the (infinite) transition relation corresponds to the CCS semantics. Processes can be extracted from CCS as
above, i.e. with CCS.process(s) (where s is a CCSTerm), or letting LTSwb parse terms from strings:

val ccs1 = CCS.process("rec(X)(!a.(?b + ?c.X))") // Parses the CCSTerm from String

val ccs2 = CCS("?a.(t.!c.?a.!b + t.!b)") // Shorthand. "t" is the internal action

The type of ccs1 and ccs2 is FiniteBranchingProcess[CCSTerm,CCSPrefix] — i.e., they are finite-
branching (but not necessarily finite-state) processes whose states are CCSTerms, and whose transition
labels are CCSPrefixes. Note that ccs1 has, intuitively, the same transitions of process p1 defined

1Note that the same process can also be retrieved via l2.process("p2"), as we did for p1 above.
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earlier: for example, ccs1.transitions is Set(!a). There is, however, a difference: the CCS LTS
distinguishes CCSPrefixes among input, output and internal actions (respectively: ?a, !a,τ), and this
additional information (which is not present for the simple string labels of process p1 above) is exploited
by the ||| operator to let two parallel CCS processes synchronise. For example, let:

val ccs12 = ccs1 ||| ccs2

Here, ccs12 has type FiniteBranchingProcess[(CCSTerm,CCSTerm),CCSPrefix], and the value of
ccs12.transitions is Set(?a, !a, τ). As expected, the τ-transition is generated by the synchron-
isation on a — and indeed, as shown in Figure A.1, ccs12(τ) returns2:

Set( ( (?b + (?c.rec(X)(!a.(?b + ?c.X)))) , (t.!c.?a.!b + t.!b) ) )

The synchronisation mechanics are parametric at the LTS level — and in particular, they are regulated by
two methods:

• LTS.syncp(l1, l2) is a predicate telling whether labels l1 and l2 can synchronise (its default
implementation is false, thus only catering for interleaved executions, as shown in Section 2.1);

• LTS.syncLabel(l) returns the new label emitted when synchronising on label l (the default
implementation is vacuous, since LTS.syncp() is false by default).

Further details about the implementation of these methods in the case of CCS are given in Section 2.4.

2.3 From synchronous to asynchronous semantics

If p is an instance of Process (which is the main abstract class common to all LTSwb processes), then
p.async is a new process obtained by pairing p with an empty FIFO buffer, represented as a List. LTSwb
performs this transformation in a general, purely semantic fashion3: each output label of p is appended to
the buffer (with an internal transition), and the head of the buffer enables a corresponding output transition.
This change is transparently reflected in the values returned by p.async.transitions. For example:

val ccs1a = ccs1.async; val ccs2a = ccs2.async

Values ccs1a and ccs2a have type FiniteBranchingProcess[(CCSTerm,Seq[CCSPrefix]),CCSPrefix]

(i.e., each state pairs a CCSTerm with a sequence of prefixes). The difference between ccs2 and ccs2a is
shown in Figure 2.2: it can be seen that, for example, the first !c transition of ccs2 becomes a τ transition
(with buffering) in ccs2a, and the head of the buffer is later consumed with a !c transition. Note, however,
that there is an important difference between ccs1 and ccs1a: while the former has a finite number of
states, the latter has infinite states, due to the presence of recursion and unbounded buffers (the difference
can be seen in Figure A.2). This is not a problem per se, because, as remarked above, LTSwb ensures that
process transitions are expanded “lazily”. Pairing a finite processes with an unbounded buffer reminds
of Communicating Finite State Machines (CFSMs) [2] — and indeed, a CFSM-like interaction (modulo
the different naming of labels) can be modeled with the composition ccs1a ||| ccs2a, by filtering the
states reachable via internal moves and synchronisations: the resulting finite transition diagram is shown
in Figure A.3 (note that the “unfiltered” transition diagram of ccs1a ||| ccs2a is infinite).

2Note that ccs12(τ) and its return value have been slightly edited for clarity, and thus are not valid Scala code.
3Indeed, such an operation is performed at the LTS level: if l is an LTS, then l.async is the LTS with l’s states paired

with a buffer; if s is a state of l, then l.async.process((s, List())) is equal to l.process(s).async.
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Figure 2.2: Outputs of ccs2.toDot() (left) and ccs2.toDot() (right).

2.4 Adding new process calculi

LTSwb has no “hardwired” notion of process calculus. A new process calculus with labelled semantics can
be added to the framework in four steps: (a) define (or possibly reuse) a class L for its labels, (b) define
a class T for its terms, (c) define a transition relation R by deriving the class Relation3[T,L,T], and
(d) suitably derive the abstract class LTS, using T and L respectively as state and label types (specifying
which labels are input/output/internal, and how they synchronise), and R as transition relation. This very
approach has been followed for implementing CCS under LTSwb, as sketched below:

(a) the base (abstract) class for CCS labels is CCSPrefix, with one derived class for each concrete label
type: CCSInPrefix, CCSOutPrefix, and CCSTau;

(b) the base (abstract) class for CCS terms is CCSTerm, with one derivative for each syntactic produc-
tion: CCSNil (terminated process), CCSSeq (prefix-guarded sequence), CCSPlus (choice), CCSPar
(parallel), CCSRec (recursion), CCSVar (recursion variable), CCSDel (delimitation). Such classes
represent the CCS abstract syntax tree, and they are instantiated by the CCS parser;

(c) the CCS semantics is implemented in the CCSSemantics singleton class. Its core method is
apply(s:CCSTerm), which returns a binary Relation[CCSPrefix,CCSTerm] containing the label-
state transitions arising from s. For example, is s is a CCSNil instance, the returned relation is
empty; if s is CCSSeq(pfx:CCSPrefix, cont:CCSTerm), the returned relation only contains the
pair (pfx, cont), and so on. The other (more complex) cases exploit LTS-level or relation-level
operators already provided by LTSwb: for example, if s is CCSPlus(term1, term2), the return
value is CCS.apply(term1) | CCS.apply(term2), where | is the union of the relations returned by



A. Scalas, M. Bartoletti 5

invoking apply() on the two subterms: as a consequence, in the resulting relation, a transition from
term1 leads to a continuation which neglects term2, and vice versa — as expected by the standard
behaviour of the CCS choice operator. Instead, if s is CCSPar(term1, term2), the returned relation
is created by directly reusing the syntax-independent, LTS-level implementation of ||| described
in Sections 2.1 and 2.2;

(d) finally, the CCS LTS is implemented in CCS, which is a derivative of FiniteBranchingLTS[CCSTerm,
CCSPrefix]. The LTS.syncp(l1, l2) method is overridden so that it returns true whenever, for
some string a, l1 == CCSInPrefix(a) and l2 == CCSOutPrefix(a) (or vice versa); moreover, the
LTS.syncLabel(l:CCSPrefix) method is overridden so that it returns CCSTauPrefix() (i.e., each
synchronisation causes the emission of a τ-prefix).

With this approach, the CCS-specific code is mostly necessary for parsing terms, while the semantics
of the operators is factored into several syntax-independent classes; moreover, the implementation of
CCS.process() and all the operations on CCS processes (e.g., |||, .toDot(), .async,. . . ) are provided
by the base abstract classes of LTSwb.

We conclude this section noticing that, additionally to standard CCS syntactic constructs, LTSwb
offers semantic operators allowing e.g. process filtering (as we did for τ-reachable states in Section 2.3),
and general sequencing: for all processes p1, p2 with the same label type, p1.seq(p2) returns a process
which behaves as p1 until it terminates, and then behaves as p2. These semantic methods can be leveraged
through the LTSwb API, on all LTSs and processes; if one wants to implement an additional process
calculus with such filtering/sequencing capabilities at the syntactic level, then it is possible to simply
reuse the underlying semantic facilities, without reimplementing them.

Finally, we stress that, if two processes (notwithstanding their LTS) share the same label type, then
they can synchronise, and their relations can be studied as shown in Section 3.

3 Behavioural relations

One of the goals of LTSwb is implementing and studying semantic relations, without syntactic limitations.
LTSwb currently implements (bi)simulation, and some variants of progress [4] and I/O compliance [1], i.e.
notions of “correct” interaction between processes. We exemplify the latter (the others are used similarly).

3.1 Experiments with I/O compliance

Intuitively, two processes p,q are I/O compliant iff the outputs of p are always matched by the inputs of q
(and vice versa), even after synchronisations and internal moves. The IOCompliance.build() method
takes two FiniteBranchingProcess instances, and returns an Either object whose Right value is a finite
I/O compliance relation. If p,q are not I/O compliant, the returned Left value is a counterexample, i.e. a
pair of non-I/O compliant states. Consider the first call to IOCompliance.build() in Listing 3.1: since

val alice = CCS("!aCoffee.?coffee.!pay + !aBeer.(?beer.!pay + ?no.!pay)")

val bartender = CCS("rec(Y)(?aCoffee.!coffee.Y + ?aBeer.(!beer.Y + !no.Y) + ?pay)")

val ab = IOCompliance.build(alice, bartender)

val aba = IOCompliance.build(alice.async, bartender.async)

Listing 3.1: Alice and bartender example, from [1].
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val aliceH = CCS("!aCoffee.(?coffee | !pay)")

val bartenderL = CCS("rec(Y)(?aCoffee.!coffee.Y + ?aBeer.(!beer.Y + !no.Y) + ?pay

+ t . rec(Z)(?aCoffee.!coffee.Z + ?aBeer.!no.Z + ?pay))")

val aHbL = IOCompliance.build(aliceH, bartenderL)

val aHbLa = IOCompliance.build(aliceH.async, bartenderL.async)

Listing 3.2: Another example from [1]: Alice tries to grab the coffee and pay at the same time.

alice and bartender are I/O compliant, ab’s Right value is an I/O compliance relation containing the
pair (alice,bartender); the same holds for aba, built on the asynchronous versions of the two processes.

Listing 3.2 shows more examples. The second call to IOCompliance.build() is successful and
returns Right, with an I/O compliance relation containing the asynchronous processes. The first call to
IOCompliance.build(), instead, is not successful, and aHbL is the Left value below (edited for clarity):

Left( (?coffee | !pay ),

(!coffee.rec(Y)(?aCoffee.!coffee.Y + ?aBeer.(!beer.Y + !no.Y) + ?pay

+ t.rec(Z)(?aCoffee.!coffee.Z + ?aBeer.!no.Z + ?pay))) )

The problem is that, after synchronising on aCoffee, aliceH and bartenderL reach the states inside
Left(· · ·), where the !pay transition of the former is not matched by a (weak) ?pay of the latter.

3.2 Adding new compliance relations

Both IOCompliance and Progress are derivatives of an abstract, reusable class called Compliance. Intuit-
ively, R is a coinductive compliance relation iff, whenever (p,q) ∈ R, then:

(i) pred(p,q) holds; (where pred is given as a parameter)

(ii) p `−→ p′ and q `′−→ q′ and `,`′ can synchronise implies (p′,q′) ∈ R;
(iii) p =⇒ p′ and q =⇒ q′ implies (p′,q′) ∈ R. (where =⇒ represents 0 or more internal moves)

Compliance implements the .build() method according to the definition above: given (p,q), it ensures
that a class-specific predicate pred holds for p,q (as per clause (i)), and then checks their reducts after
synchronisation or internal moves (as per clauses (ii) and (iii)). Compliance.build() terminates when
either no more states need to be checked, or pred is false: in the latter case, it returns a counterexample, as
seen in Section 3.1. Progress, IOCompliance and their variants are implemented by just changing pred,
and new coinductive compliance relations can be added in the same way: e.g., the “Correct contract
composition” from [3] (Def. 3) can be added by defining pred(p,q) as (p ||| q).wbarbs.contains(X)

(where .wbarbs is the Set of weak barbs of a process, and X is a label denoting success).
Note that Compliance.build() only implements a semi-algorithm: hence, the method may not

terminate if one of the processes under analysis is infinite-state — and in particular, if it can reduce, through
internal moves, to an infinite number of distinct states. In such a situation, LTSwb may need to construct an
infinite compliance relation, with an infinite search for states violating pred. Our Alice/bartender examples
are infinite-state, but do not generate infinite internal moves, and the semi-algorithm terminates. The risk of
non-termination could be simply avoided by leveraging the types provided by LTSwb: for example, by only
calling Compliance.build() on FiniteProcess instances (e.g., through a simple wrapper). This would
be a sufficient (but not necessary) condition ensuring the termination of the method, albeit sacrificing cases
such as the ones illustrated above. By letting Compliance.build() also accept FiniteBranchingProcess
arguments, LTSwb allows to experiment with behaviours for which the termination of the method is not
(yet) clear, or follows by some properties which are not easily captured by the type system (e.g., the way
inputs/outputs are interleaved in the Alice/bartender example).
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Verifying relations. LTSwb also implements the method Compliance.check(). Given an instance r

of some Compliance-derived relation, r.check() is true when each pair of states in r actually respects
pred according to clause (i) above, and r contains all the pairs of states required by clauses (ii) and (iii).
Consider e.g. Listing 3.1: ab is a Right value, and ab.right.get.check() is true. This also holds for aba,
and aHbLa from Listing 3.2. It is important to note that Compliance.build() and Compliance.check()

are implemented separately: the latter is intended as an independent verification method, also for relations
which are defined “by hand” (i.e., directly as finite sets of pairs of states) without resorting to their own
.build() method4. For example, we can instantiate a Progress relation from an existing relation:

val aHbLaProg = Progress(aHbLa.right.get) // Recall: aHbLa is an IOCompliance rel.

and in this case aHbLaProg.check() holds — i.e., notwithstanding its type, aHbLa is also a progress
relation. Under this framework, if a new compliance relation is implemented as explained above (i.e., by
deriving the Compliance class and providing a suitable class-specific pred), then synthesis (.build()) and
verification (.check()) are obtained “for free”. A similar framework is also in place for (bi)simulation.

4 Conclusions and future work

In the current (early) stage of development, LTSwb offers a flexible and extensible platform allowing to
define generic LTSs and processes, explore their (finite or infinite) state space and study their (bi)simulation
and compliance relations. It offers general, syntax-independent operators for manipulating LTSs and
processes, on which specific process calculi can be implemented.

The most similar tool, albeit more CCS-centric, is [6], whose development stopped around 1999:
hence, its obsolete dependencies and restrictive licensing terms make it very difficult to use and improve.
Another related tool is LTS Analyser [11] — which is limited to finite-state processes; moreover, its
development stopped around 2006, and its source code is not available.

It is possible to find some similarities between LTSwb and the Process Algebra Compilers proposed in
the ’90s [5]: LTSwb can be seen as a semantic backend on which a process calculus can be “compiled” by
suitably deriving some classes, and letting the parser instantiate them — as sketched in Section 2.4. On
the one hand, this approach makes the parser quite integrated into LTSwb, and not very suited for different
backends; on the other hand, the tight integration allows to use parser combinators, thus obtaining easily
maintainable, well-typed parsers.

Beyond representing and manipulating LTSs and processes, LTSwb also allows to explore them —
not unlike well-established model checking tools like mCRL2 [7] and CADP [8]. Beside being much
smaller and less mature than such tools, LTSwb also has a different goal (being a framework rather than
an application) and tries keep a more semantic foundation, in that it does not depend on (nor privileges)
specific process languages. One intended usage scenario of LTSwb is the following: suppose you want to
introduce a new behavioural relation (say, I/O compliance), and you want to study it on some process
algebra (say, asynchronous CCS), or on some processes whose specification is provided directly as a
set of state-label-state triples (e.g., from some industrial case study). One can achieve these goals by
extending the Compliance class, and applying it on LTSs and processes, as summarised in the paper. An
alternative way would be that of (a) encoding asynchronous CCS or the given state-label-state triples
into the process calculus and LTSs accepted by mCLR2 or CADP and their tools (proving that such an
encoding is correct), and (b) encode I/O compliance into e.g. a µ-calculus formula (and, again, prove
that such an encoding is correct). Both alternatives are possible; however, we think that for the scenario

4When debugging is enabled, LTSwb runs .check() on each relation created by Compliance.build(), to test its code.
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sketched above, the LTSwb framework allows users to obtain quicker results.
Future work on LTSwb includes the addition of more relations, with a “reusable” approach to synthesis

and verification similar to the one adopted for Compliance and (bi)simulation. Moreover, we plan better
support for multiparty interactions (currently provided via the PCCS calculus, not discussed here) and
richer process calculi with time and value passing. We also plan to integrate LTSwb with Gephi [9], thus
providing a better user interface with interactive exploration of large transition diagrams.
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(µ(X)(!a.((?b.(0)) + (?c.(X)))),?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))))

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))))

!a

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),(τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))))

τ

(µ(X)(!a.((?b.(0)) + (?c.(X)))),(τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))))

?a

?c

(0,?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))))

?b ?a

(0,(τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))))

?a

(0,!c.(?a.(!b.(0))))

τ

(0,!b.(0))

τ

(0,?a.(!b.(0)))

!c

?a

(0,0)

!b

?b ?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),!c.(?a.(!b.(0))))

τ

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),!b.(0))

τ

!a

(µ(X)(!a.((?b.(0)) + (?c.(X)))),!c.(?a.(!b.(0))))

τ

(µ(X)(!a.((?b.(0)) + (?c.(X)))),!b.(0))

τ

!a

(µ(X)(!a.((?b.(0)) + (?c.(X)))),?a.(!b.(0)))

!c

?b

?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),?a.(!b.(0)))

!c

τ

?b

?c

?a

!a ?a

τ

!a

(µ(X)(!a.((?b.(0)) + (?c.(X)))),0)

!b?b

τ

?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),0)

!b

?b ?c!a

Figure A.1: Output of ccs12.toDot().

µ(X)(!a.((?b.(0)) + (?c.(X)))) (?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X))))))
!a

?c
0?b

(µ(X)(!a.((?b.(0)) + (?c.(X)))),List())

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a))

τ

(0,List(!a))

?b

(µ(X)(!a.((?b.(0)) + (?c.(X)))),List(!a))

?c

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List())

!a

(0,List())

!a

!a

((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a, !a))

τ

!a

(0,List(!a, !a))

?b

(µ(X)(!a.((?b.(0)) + (?c.(X)))),List(!a, !a))

?c

...

!a

...

τ

...

!a

?c

?b

Figure A.2: Output of ccs1.toDot() (top) and ccs1a.toDot(maxDepth=Finite(4)) (bottom).
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((µ(X)(!a.((?b.(0)) + (?c.(X)))),List()),(?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))),List()))

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a)),(?a.((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0)))),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),((τ.(!c.(?a.(!b.(0))))) + (τ.(!b.(0))),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(!c.(?a.(!b.(0))),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(!b.(0),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(?a.(!b.(0)),List(!c)))

τ

((µ(X)(!a.((?b.(0)) + (?c.(X)))),List()),(?a.(!b.(0)),List()))

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List(!a)),(?a.(!b.(0)),List()))

τ

τ

(((?b.(0)) + (?c.(µ(X)(!a.((?b.(0)) + (?c.(X)))))),List()),(0,List(!b)))

τ

((0,List()),(0,List()))

τ

Figure A.3: Output of (ccs1a ||| ccs2a).filter(l => l.isTau).toDot(). Note that τ-transitions
generated by synchronisations cause the reduction of buffers — i.e., the output at the head of a buffer is
consumed by an input of the other process.
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