
Parametrized Automata Simulation and
Application to Service Composition

Walid Belkhir1, Yannick Chevalier2, and Michael Rusinowitch1

1 INRIA Nancy–Grand Est & LORIA
walid.belkhir@inria.fr,rusi@loria.fr,particle.mania@gmail.com

2 Université Paul Sabatier & IRIT Toulouse ychevali@irit.fr

1 Introduction

This paper summarizes several results that have been published in [3]. Service
Oriented Architectures (SOA) consider services as self-contained components
that can be published, invoked over a network and combined with other services
through standardized protocols in order to dynamically build complex applica-
tions. Service composition is required when none of the existing services can
fulfill some client’s needs but a suitable coordination of them would satisfy the
client requests. How to find the right combination and how to orchestrate this
combination are among the key issues for service architecture development.

Service composition has been studied in many works e.g. [9,4]. The related
problem of system synthesis from libraries of reusable components has been
thoroughly investigated too [8,5].

In this paper we address the composition synthesis problem for web services
in which the agents are parametrized, i.e. the client and the available services
exchange data ranging over an infinite domain and they are possibly subject
to some data constraints. More precisely, the composition synthesis problem we
consider can be stated as follows (e.g. [6,9]): given a client and a community of
available services, compute a mediator, that can be viewed as a special service
for enabling communication between the client and the available services in such
a way that each client request is forwarded to an appropriate service.

As usual (e.g. [4]), this problem is reduced to the computation of a simulation
relation between the target service (specifying an expected service behaviour for
satisfying the client requests) and the asynchronous product of the available
services. If such a simulation relation is known then it can be easily used to
generate a mediator, that is a function that selects at each step an available
service for executing an action requested by the client.

One of the most successful approaches to composition abstracts services as
finite-state automata (FA) and apply available tools from automata theory to
synthesize a new service satisfying the given client requests from an existing
community of services. However it is not obvious whether the automata-based
approach to service composition can still be applied with infinite alphabets since
simulation often gets undecidable in extended models like Colombo ([1]). Start-
ing from the approach initiated in [2] our objective is to define expressive classes

1

of automata on infinite alphabets which are well-adapted to the specification
and composition of services and enjoy nice closure properties and decidable sim-
ulation preorder. Compared to our previous work [2] we get a more expressive
service specification formalism thanks to the use of guarded transitions.

1.1 Contributions

In this paper we rely on automata-based techniques to tackle the problem of
composition synthesis of parametrized services. We introduce an extension of
automata called parametrized automata or PAs, that allows a natural specifi-
cation and decidable synthesis of parametrized services. In PAs, the transitions
are labeled by letters or variables ranging over an infinite alphabets and guarded
by conjunction of equalities and disequalities. Besides, some variables can be re-
freshed in some states: their value is reset, and they can be bound later to an
arbitrary letter. Refreshing mechanism is particularly useful when computation
starts a new sessions or to simulate calls to functions with local variables.

We introduce a simulation preorder for PAs and show its decidability. The
proof relies on a game-theoretic characterization of simulation. We show how this
result can be applied to the synthesis of a mediator for web services. Although
not detailed here, the simulation decision procedure can help to solve language
containment problems which are important ones in formal verification. The po-
tential applicability of our model in verification also follows from the fact that
PAs are closed under intersection, union, concatenation and Kleene operator.

2 Parametrized automata

In this section we define formally the class of PAs. Firstly, we illustrate the
practical use of PAs through a service composition problem.

2.1 A motivating example

In Fig. 1 we have an e-commerce website allowing clients to open files, search
for items in a large domain that can be abstracted as infinite and save them
to an appropriate file depending on the type of the items (whether they are in
promotion or not). The three agents: CLIENT, FILE and SEARCH communicate
with messages ranging over a possibly infinite set of terms. The problem is to
check whether FILE and SEARCH can be composed in order to satisfy the
CLIENT requests. Following [4] the problem reduces to finding a simulation
between CLIENT and the asynchronous product of FILE and SEARCH. We
emphasize that the variables x and y are refreshed (i.e. freed to get a new
value) when passing through the state p0. In the same way variables z and
w are refreshed at p2. The variables m and n are refreshed at q0; the variables i
and j are refreshed at r0. For saving space, a transition labeled by a term, say
write(m,n), abbreviates successive transitions labeled by the root symbol and
its arguments, here write, m and n, respectively. We notice that this example

2

cannot be handled within the subclass of fresh-variable automata [2] since they
do not have guards.

p0

p1

p2

p3

p4

p5

Open(x)

Open(y) Fail

Fail

Search(z)Fail

Type(z,w)

Write(z,y)

Close(x)

Close(y)

CLIENT

x6= y

w 6= prom

Write(z,x)
w = prom

q0Open(m) Close(m)

Write(m,n)

Fail

FILE

r0

r1

Search(i)Type(i,j)

SEARCH

Fail

Fig. 1: PROM example.

Before introducing formally the class of PAs, let us first explain the main
ideas behind them. The transitions of a PA are labeled with letters or variables
ranging over an infinite set of letters. These transitions can also be labeled with
guards consisting of equalities and disequalities. Its guard must be true for the
transition to be fired. We emphasize that while reading a guarded transition
some variables of the guard might be free and we need to guess their value.
Finally, some variables are refreshed in some states, that is, variables can be
freed in these states so that new letters can be assigned to them. Firstly, we
introduce the syntax and semantics of guards.

Definition 1. The set G of guards over Σ ∪ X where Σ is an infinite set of
letters, and X is a finite set of variables, is inductively defined as follows:

G := true | α = β | α 6= β | G ∧G,

where α, β ∈ Σ ∪ X . We write σ |= g if a substitution σ satisfies a guard g.

The formal definition of PAs follows.

Definition 2. A PA is a tuple A = 〈Σ,X , Q,Q0, δ, F, κ〉 where

– Σ is an infinite set of letters, X is a finite set of variables,
– Q is a finite set of states, Q0 ⊆ Q is a set of initial states,
– δ : Q × (ΣA ∪ X ∪ {ε}) × G → 2Q is a transition function where ΣA is a

finite subset of Σ,
– F ⊆ Q is a set of accepting states, and κ : X → 2Q is called the refreshing

function.

3

A run of a PA is defined over configurations. A configuration is a pair (γ, q)
where γ is a substitution such that for all variables x in dom(γ), γ(x) is the
current value of x, and q is a state of the PA.

p p′
x1

y1, y1 6= x1

A1

q q′

x2

y2, y2 6= x2

A2

Fig. 2: Two PAs A1 and A2 where the variable y1 is refreshed in the state p, and
the variables x2, y2 are refreshed in the state q.

Example 1. Let A1 and A2 be the PAs depicted above in Figure 2 where the
variable y1 is refreshed in the state p, and the variables x2, y2 are refreshed in
the state q.

We notice that while making the first loop over the state p of A1, the variable
x1 of the guard (y1 6= x1) is free and its value is guessed. Then the variable y1
is refreshed in p, and at each loop the input letter should be different than the
value of the variable x1 already guessed. More precisely, the behaviour of A1 on
an input word is as follows. Being in the initial state p, either:

– Makes the transition p → p′ by reading the input symbol and binding the
variable y1 to it, then enters the state p′. Or,

– Makes the transition p→ p by:
1. Reading the input symbol and bounding the variable y1 to it.
2. Guessing a symbol in Σ that is different than the input symbol (i.e. the

value of x1) and binds the variable y1 to the guessed symbol, then enters
the state p.

3. From the state p, refresh the variable y1, that is, it is no longer bound
to the input symbol. Then, start again.

We illustrate the run of A1 on the word w = abbc, starting from the initial
configuration (∅, p) as follows:

(∅, p) a→ ({x1 7→ c}, p) b→ ({x1 7→ c}, p) b→ ({x1 7→ c}, p) c→ ({x1 7→ c}, p′)

Hence, the language L(A1) consists of all the words in Σ? in which the last
letter is different than all the other letters. By following similar reasoning, we
get L(A2) = {w1w

′
1 · · ·wnw

′
n | wi, w

′
i ∈ Σ, n ≥ 1, and wi 6= w′

i, ∀i ∈ [n]}.

2.2 Properties of parametrized automata

Closure properties are important for the modular development of services. PAs
enjoy the same closure properties as finite automata except for complementation:

Theorem 1. [3] PAs are closed under union, concatenation, Kleene operator
and intersection. They are not closed under complementation.

4

For the main decision procedures we have that:

Theorem 2. [3] For PAs, Membership is NP-complete, Universality and Con-
tainment are undecidable. Nonemptiness is PSPACE-complete

To argue that Nonemptiness is PSPACE, given a PA A, it is sufficient to show
that A recognizes a non-empty language over Σ iff A recognizes a non-empty
language over a finite set of letters. For this purpose, and in order to relate
the two runs of A (the one over an infinite alphabet and the one over a finite
alphabet) we introduce a coherence relation between substitutions.

To show that the Nonemptiness of PAs is PSPACE-hard, we reduce the reach-
ability problem for bounded one-counter automata [7] (known to be PSPACE-
hard) to the Nonemptiness problem of PAs [3].

Theorem 3. The simulation problem for PAs is decidable in EXPTIME.

In order to show the decidability of simulation for PAs we provide a game-
theoretic formulation of simulation in terms of symbolic simulation games. Roughly
speaking, the arena of a symbolic game is a PA in which each state is controlled
by one of the two players, Eloise or Abelard. From a state under his control,
the player chooses an outgoing transition and instantiates the (possible) free
variable that labels this transition and all the free variables in the constraint
of this transition. The problem of solving a symbolic game can be reduced to
solving the same game in which the two players instantiate the variables from a
finite set of letters.

References

1. L. Akroun, B. Benatallah, L. Nourine, and F. Toumani. On decidability of simulation
in data-centric business protocols. In BPMW’13, v.132, pages 352–363.

2. W. Belkhir, Y. Chevalier, and M. Rusinowitch. Fresh-variable automata: Applica-
tion to service composition. In SYNASC’13, pages 153–160. IEEE C.S.

3. W. Belkhir, Y. Chevalier, and M. Rusinowitch. Parametrized automata simulation
and application to service composition. Journal of Symbolic Computation, 69:40–60,
2014.

4. D. Berardi, F. Cheikh, G. D. Giacomo, and F. Patrizi. Automatic service composi-
tion via simulation. Int. J. Found. Comput. Sci., 19(2):429–451, 2008.

5. S. Bliudze and J. Sifakis. Synthesizing glue operators from glue constraints for the
construction of component-based systems. In Software Composition, pages 51–67.
Springer, 2011.

6. F. Cheikh. Composition de services: algorithmes et complexité. PhD
thesis, Université Paul Sabatier, Thèse de doctorat. http://thesesups.ups-
tlse.fr/712/1/Cheikh Fahima.pdf, 2009.

7. C. Haase, J. Ouaknine, and J. Worell. On the relationship between reachability
problems in timed and counter automata. In Proc. of Reachability Problems, 2012.

8. Y. Lustig and M. Y. Vardi. Synthesis from component libraries. In FOSSACS’09,
pages 395–409, 2009.

9. L. Nourine and F. Toumani. Formal approaches for synthesis of web service business
protocols. In WS-FM’12, volume 7843 of LNCS, pages 1–15. Springer, 2012.

5

	Parametrized Automata Simulation and Application to Service Composition

