
Submitted to:
ICE 2015

c©
This work is licensed under the
Creative Commons Attribution License.

On the Computation Power of Name Parameterization in
Higher-order Processes

Xian Xu
East China University of Science and Technology, China

xuxian@ecust.edu.cn

Qiang Yin Huan Long
Shanghai Jiao Tong University, China

yinqiang.sjtu@gmail.com longhuan@sjtu.edu.cn

Parameterization extends higher-order processes with the capability of abstraction (akin to that in
lambda-calculus), and is known to be able to enhance the expressiveness. This paper focuses on the
parameterization of names, i.e. a construct that maps a name to a process, in the higher-order setting.
We provide two results concerning its computation capacity. First, name parameterization brings
up a complete model, in the sense that it can express an elementary interactive model with built-in
recursive functions. Second, we compare name parameterization with the well-known pi-calculus,
and provide two encodings between them.
keywords: Parameterization, Computation, Higher-order, Processes

1 Introduction

Parameterization stems from the abstraction construct in the lambda-calculus by Church [1]. Param-
eterized processes are ubiquitous in modern programming languages (e.g. Java, Erlang, Clojure). A typ-
ical parameterization is the name-parameterization, i.e., 〈x̃〉P in which x̃ is a sequence of parameterized
names that process P may take advantage of in its computation (e.g. some communication port, certain
reference to database connection pool). In higher-order process models, name-parameterization has been
shown to be an effective measure to increase the expressiveness, viz., passing parameterized processes
(so-called abstraction-passing) is strictly more powerful than ordinary process-passing [9] [18] [20]. In
this paper, we deepen the study of name-parameterization in higher-order paradigm, from two perspec-
tives: computational completeness and comparison with name-passing.

Related work and motivation

In the field of higher-order processes, there have not been many works on computational complete-
ness (i.e. Turing completeness) as those for first-order processes. A relatively recent notable work is by
Lanese et al. [10], who show that HOcore, a very basic higher-order process calculus with the operators
of input, output and composition, is Turing complete. This significant result reveals that, in contrast to
the first-order case, even with the most basic operators and without the restriction operator, higher-order
processes have the computational capacity of Turing machines. Technically, the result is established by
encoding Minsky machines which are equivalent to Turing machines in computation power. On the other
hand, from the viewpoint of interaction, the encoding is not so strong in two aspects. Firstly, it is not
compositional. That is, two processes P,P′ respectively encoding two Minsky machines M,M′ cannot
interact by, for example, outputting the computing result of P to P′ or vice versa. Secondly, the encoding

2

is vulnerable to turbulence from the environment. That is, there are a few free (global) names visible to
the observer that may easily interfere with the computation procedure. This may be largely attributed to
the absence of restriction operator as well as the encoding strategy. To improve, viz. to have a robust and
compositional interpretation of Turing computability, one needs more requirements on both the encoding
strategy and the formulation of Turing computability (in a concurrency setting). In the first part of this
paper, we try to provide one such kind of encoding. Specifically, we show that name-parameterization
in a higher-order setting grants us a compositional (and turbulence-resistent) encoding of Turing com-
putability which is sound and complete. This kind of encoding is not likely to be achievable by HOcore.
Technically, we translate an elementary interactive model called C [5], which encapsulates recursive
functions (the computable functions) , into higher-order pi-calculus with name-parameterization (nota-
tion Πd). In addition to providing Turing computability in a compositional way (thus also an approach of
its design pattern), the encoding also brings out some basic insight into the programming capability/style
of name-parameterization in the higher-order paradigm.

The second part of this paper continues to study another aspect of the computation power of name-
parameterization, that is, comparison with the well-established (first-order) name-passing calculus, specif-
ically the pi-calculus (notation π) [11]. Since its introduction, higher-order processes have been ex-
amined through comparison with name-passing. There are basically two directions: translation from
higher-order processes to first-order processes and the converse. In the former direction, Sangiorgi pro-
poses in [12] a translation from a very rich calculus, which includes both higher-order and first-order
operators, and both name-parameterization and process-parameterization (i.e. abstraction on processes
themselves), into π extended also with the name-parameterization. This translation tackles only unary
parameterization, and is significant in, among others, bringing up a useful technique of triggers. Here we
manage to isolate and generalize the essence of the encoding by Sangiorgi. We provide an encoding from
Πd (which is purely higher-order) into π (which does not have name-parameterization); moreover name-
parameterization is not necessarily unary. In the latter direction, Thomsen gives in [17] a translation from
π to higher-order processes with the relabelling operator. This translation is important in presenting a
novel way to play the role of a π name, which is a particularly remarkable point in unveiling the dif-
ference/connection between process-passing and name-passing. However, relabelling is a rather strong
operator that often arouses controversy. In contrast, parameterization is a semantically more tractable
operation. So here we take advantage of the idea of Thomsen to provide an encoding of π in Πd .

Contribution

In summary, the contribution of this paper is twofold.

• We show that higher-order processes extended by name-parameterization are capable of comput-
ing all that is computable (i.e. computation-complete), by providing a compositional and robust
translation from C that is a basic concurrency model of computable functions. We show that the
translation is sound and complete (i.e., two C processes are equivalent if and only if their encodings
are equivalent).

• We compare higher-order processes extended by name-parameterization with name-passing pro-
cesses, by providing two translations between them. We discuss the properties of the translations
with respect to some well-known notion of encoding in the field. We show that most of the require-
ment are satisfied, except for the soundness of the translation from name-passing to higher-order
processes with name-parameterization, in which case a weaker form of soundness is provided.

3

The rest of the paper is organized as follows. Section 2 defines the relevant calculi. Section 3
shows the result on computation completeness. Section 4 presents the expressiveness result. Section 5
concludes the paper.

2 Preliminary

2.1 Calculus π

The first-order pi-calculus (notation π) of Milner, Parrow and Walker [11] is one of the most devel-
oped process calculi in the literature. Here we use a lightweight variant [3] [4], in which names (ranged
over by m,n,u,v,w) are classified into two categories: name constants (ranged over by a,b,c,d,e) and
name variables (ranged over by x,y,z). Below is the grammar whose constructs have their standard mean-
ing. We use guarded replication instead of general replication without loss of expressiveness [15] [7].

P,Q := 0
∣∣∣m(x).P

∣∣∣mn.P
∣∣∣(c)P ∣∣∣P |Q

∣∣∣ !m(x).P
∣∣∣ !mn.P

A name constant a is bound (local or restricted) in (a)P, otherwise it is free (global). A name variable x is
bound in a(x).P and free otherwise. We use respectively f n(·),bn(·),n(·), f v(·),bv(·),v(·) to denote free
constants, bound constants, constants, free variables, bound variables, and variables in a set of processes.
A name is fresh if it does not appear in any of the processes under consideration. A process P is closed if
f v(P)= /0. We consider closed processes by default. We have a few derived operators: a(d).P def

= (d)ad.P,
a.P def

= a(x).P (x /∈ f v(P)), a.P def
= a(d).P (d /∈ f n(P)). A trailing 0 process is usually trimmed. We use

a tilde to stand for tuples. For ñ, |ñ| stands for its length; m ∈ ñ means m is its element; mñ abbreviates
adding m to the tuple; (c1)(c2) · · ·(ck)E is written as (c1c2 · · ·ck)E or simply (c̃)E. Substitutions {y/x}
are ranged over by σ . Sometimes substituting a constant for another is called renaming, and assignment
if for a variable. A context C is a process with some subprocess replaced by the hole [·]; then C[A] is the
process resulting from filling in the hole by process A. The LTS (Labelled Transition System) comprises
the rules as below (symmetric rules are skipped).

a(x).P
a(b)−−→P{b/x} ab.P ab−→P

P λ−→P′

P |Q λ−→P′ |Q
bn(λ)∩ f n(Q)= /0

P
a(b)−−→P′,Q ab−→Q′

P |Q τ−→P′ |Q′
P

a(b)−−→P′,Q
a(b)−−→Q′

P |Q τ−→(b)(P′ |Q′)

P λ−→P′

(c)P λ−→P′
c�∈n(λ)

P ac−→P′

(c)P
a(c)−−→P′

c�=a

!a(x).P
a(b)−−→P{b/x}| !a(x).P !ab.P ab−→P | !ab.P

Actions (ranged over by λ) include τ , and visible ones: input (a(b)), output (ab) and bound output (a(c))
which occur on constant names, and the outputted name is a constant (i.e. no variable can be transmitted).
As usual, ≡ denotes the standard structural congruence [11] [16], which is the smallest relation satisfying
the monoid laws for parallel composition, commutative laws for both composition and restriction, and a
distributive law (c)(P |Q) ≡ (c)P |Q (if c /∈ f n(Q)). We write ==⇒ for the reflexive transitive closure of

4

τ−→ , and λ
==⇒ for ==⇒ λ−→==⇒; then λ̂

==⇒ is λ
==⇒ if λ is not τ , and ==⇒ otherwise. A process P is divergent,

denoted P⇑, if it has an infinite computation (i.e. τ sequence). A relation R is divergence-sensitive if
whenever PR Q then Q⇑ implies P⇑. In the standard way, the bisimulation on π is defined as below and
is a congruence relation [11] [4].

Definition 1 (Bisimulation). Weak bisimilarity =π is the largest symmetric bisimulation relation R on

π processes such that whenever PR Q and P λ−→P′ then Q λ̂
==⇒Q′ and P′R Q′.

The local bisimilarity (≈π
l) characterizes weak bisimulation, i.e. ≈π

l coincides with =π (see [6] for a
proof), and will be used when discussing the encodings.

Definition 2. Local bisimilarity ≈π
l is the largest symmetric local bisimulation relation R on π processes

such that:

• if P λ−→P′, λ is not bound output, then Q λ̂
==⇒Q′ and P′R Q′;

• if P
a(b)−−→P′, then Q

a(b)
==⇒Q′, and for every R, (b)(P′ |R)R (b)(Q′ |R).

2.2 Calculus Πd

The grammar of higher-order pi-calculus with parameterization of names (notation Πd) is as below.
The operators have their standard meaning [12].

E,E ′ := 0
∣∣∣ X

∣∣∣ a(X).E
∣∣∣ aE ′.E

∣∣∣ E |E ′
∣∣∣ (a)E ∣∣∣ 〈x̃〉E ∣∣∣ E〈m̃〉

Letters A,B,E,F,G,P,Q,T range over process, and X ,Y,Z represent process variables. Process of the
form 〈x̃〉E, in which x̃ is not empty and bound, are parameterized processes. Process without outermost
parameterization are non-parameterized processes. We have name variables, name constants and names
defined in a similar way to that in π .

For abstraction 〈x̃〉E and application E〈m̃〉 to work properly, we assume a type system [12] to ensure
type consistency. We will not present the typing however, because it is not important for the study in
this paper. Notations f pv(·), bpv(·), pv(·) respectively denote free process variables, bound process
variables and process variables. Closed processes contain no free (name or process) variables. Name
substitution E{y/x} and process substitution E{F/X} are defined in the usual way, and can be extended
to tuples {ñ/m̃} and {Ẽ/X̃}. Notation E[X̃] is the process with possibly X̃ occurring in it, and E[Ã] is
E[X̃]{Ã/X̃}. Some CCS-like prefixes are defined as: a for a(X).0, a for a0.0. We also define below
replication !P and will use it in the encodings: !P def

= (c)(Qc |cQc) where Qc
def
= c(X).(X |P |cX). In Πd ,

the structural congruence ≡ (we reuse the notation) is defined similar to that of π , with one additional
law for parameterization: (〈x̃〉E)〈m̃〉 ≡ E{m̃/x̃}, |m̃|=|x̃|. The LTS rules are as below (symmetric rules
omitted).

a(X).F
a(E)−−→F{E/X} aE.F aE−→F

E λ−→E ′

E |F λ−→E ′ |F
bn(λ)∩ f n(F)= /0

E
a(E1)−−−→E ′ F

(c̃)a[E1]−−−−→F ′

E |F τ−→(c̃)(E ′ |F ′)

E
(c̃)a[E1]−−−−→E ′

(d)E
(d)(c̃)a[E1]−−−−−−→E ′

d∈ f n(E1)−{c̃,a}

E λ−→E ′

(c)E λ−→(c)E ′
c�∈n(λ)

F ≡ E, E λ−→E ′, E ′ ≡ F ′

F λ−→F ′

5

The transition rules are largely self-explanatory. We use λ for actions: τ (internal action), a(E) (higher-

order input), and (x̃)aE (higher-order output) which is sometimes written (x̃)a[E]. Notations ==⇒, λ
==⇒,

λ̂
==⇒ and P⇑ (also the notion of divergence-sensitivity) are defined in the same way as that for π . The well-
known bisimulation equivalence (and congruence) for higher-order processes is the context bisimulation
[12] [14].

Definition 3 (Context bisimulation). Context bisimilarity =Πd is the largest symmetric context bisimu-
lation relation R on Πd processes such that whenever E R F , the following properties hold:

• If E λ−→E ′ and λ is not output, then F λ̂
==⇒F ′ and E ′R F ′;

• If E
(c̃)aE1−−−→E ′, then F

(d̃)aE2
====⇒F ′, and for every process G[X] s.t. c̃d̃ ∩ f n(G) = /0, it holds that

(c̃)(G[E1] |E ′) R (d̃)(G[E2] |F ′).

We use =⇑
Πd to denote the divergence-sensitive context bisimilarity.

2.3 Calculus C

The C calculus [5] is an elementary process model with built-in computable functions. It is somewhat
minimal in having the substratal computation ability (i.e. (Turing)-computable functions) and interaction
ability (i.e. basic communication primitive). In a process expression, we usually use i (respectively x)
to denote natural number i (respectively variable x of natural numbers), so as to avoid ambiguity. The
processes of C are generated by the following BNF.

P := 0
∣∣∣ Ω

∣∣∣ a(i)
∣∣∣ Fb

a (f (x))
∣∣∣ P |P

Intuitively, a(i) is a process outputting natural numbers i on a, and Ω is a divergent process (i.e. doing
an infinite number of internal actions). Process Fb

a (f (x)), which is the encapsulation of computable
function f (x), acts as a black box that gets input m on channel a and computes f (m). If f (i) is defined
then it outputs f (i) over channel b, otherwise it diverges. Notice f (x) is unary for the sake of simplicity;
functions of arbitrary arity can be encoded into unary ones [2]. There are three types of actions: input
(a(i)), output (a(i)), internal move (τ). We use λ to ranger over actions. The LTS is as below (symmetric
rules omitted).

a(i)
a(i)−−→0 Ω τ−→Ω

P
a(i)−−→P′ Q

a(i)−−→Q′

P |Q τ−→P′|Q′
P λ−→P′

P |Q λ−→P′|Q

f (m) = n

Fb
a (f (x))

a(m)−−→b(n)

f (m) is undefined

Fb
a (f (x))

a(m)−−→Ω

The structural congruence ≡C is the least equivalence and congruence relation satisfying the following
equalities.

0 |P ≡C P, P |Q ≡C Q |P, (P |Q) |R ≡C P |(Q |R), Ω |Ω ≡C Ω

We shall use ≡C as the representative equivalence on C. Obviously it is divergence-sensitive.
We use
C to stand for the standard bisimulation with divergence-sensitivity. One important property

holds for the C-calculus is the following theorem (see [5] for a proof).

6

Theorem 4. P
C Q if and only if P ≡C Q.

A process model is computation complete if it can encode C. Note that in the definition of C-
calculus we use the abstract notion of computable functions [2], and do not distinguish between different
realizations of a computable function. For example, if f (x) and g(x) are two realizations of computable
function h(x), then they are represented by h(x) in C. In order to encode C, it suffices to encode the
recursive realization (a.k.a., the recursive functions) of computable functions.

2.4 A notion of encoding

We here introduce a notion of encoding. A process model L is a triplet (P,−→ ,≈), where P is
the set of processes, −→ is the LTS with a set A of actions, and ≈ is a behavioral equivalence. Given
Li

def
= (Pi,−→ i,≈i) (i=1,2), an encoding from L1 to L2 is a function [[·]] : P1 −→ P2 that satisfies

some set of criteria. The following criteria set used in this paper is from [9] (a variant based on [8]).
L1 � L2 means there is an encoding from L1 to L2. As shown in [9], � enjoys transitivity. Notice
that some encodings we are going to investigate in the paper do not satisfy all the criteria. For the sake
of simplicity, we stick to the term “encoding”, and explicitly point out the properties that are not met (if
any).

Definition 5 (Criteria for encodings). There are two categories.

Static criteria:
(1) Compositionality. For any k-ary operator op of L1, and all P1, ...,Pk ∈ P1, [[op(P1, ...,Pk)]]
= Cop[[[P1]], ..., [[Pk]]] for some context Cop[· · ·] ∈ P2;
(2) Name invariance. For any injective substitution σ of names, [[Pσ]] = [[P]]σ .

Dynamic criteria:

(1) Forth operational correspondence. Whenever P λ
==⇒P′, it holds [[P]] λ ′

==⇒≈2 [[P′]], for some action
λ ′ with the same subject as that of λ (the subject of an action (e.g., a(A)) is the name on which the
action happens (e.g., a)) ;

(2) Back operational correspondence. Whenever [[P]] λ ′
==⇒T , there exist P′ and λ with the same

subject as that of λ ′ s.t. P λ
==⇒P′ and T==⇒≈2 [[P′]];

(3) Adequacy. P ≈1 P′ implies [[P]] ≈2 [[P′]]. This is also known as soundness. The converse is
known as completeness;
(4) Divergence-reflecting. If [[P]] diverges, so does P.

3 Computation completeness

In this section we focus on interpreting C in Πd . In order to do that we start by interpreting the natural
numbers. Then we go ahead to interpret the processes encapsulating all the computable functions.

3.1 Natural numbers

A natural number in Πd is coded as a binary abstraction with two parameters. The first parameter
is used to do subtraction while the second one is used to test whether the given number is zero. The
definition of natural numbers is given as follows.

�0�
def
= 〈x,y〉y0 �n+1�

def
= 〈x,y〉x�n�

7

The processes of zero, output and composition are translated as below.

�0�
def
= 0 �Ω�

def
= !τ �a(n)� def

= a�n� �P |Q�
def
= �P� |�Q�

3.2 Recursive functions

By Church-Turing Thesis, the set of (unary) computable functions coincides with the set of all (u-
nary) recursive functions. In the attempt to show that Πd is a computation complete model, it is sufficient
to provide an interpretation of the three basic functions: zero function, successor function and projec-
tion function, and three operators: composition, recursion and minimization. We then prove that the
interpretation satisfies all the requirements in Definition 5, except the back operational correspondence.

1. Zero function: Zb
a

def
= a(X).b�0�.

2. Successor function: Sucb
a

def
= a(X).b[〈x,y〉xX].

3. Projection function: Pr(i)b
a1,...,an

def
= a1(X1).a2(X2) . . .an(Xn).bXi.

4. Composition Cmp(F, G̃)b
a1,...,an

: Let F(x1, . . . ,xk) be a k-ary recursive function, and iG (1 ≤ i ≤ k)
be n-ary recursive functions. The interpretation of F(1G,2G, ...,kG), i.e. Cmp(F, G̃)b

a1,...,an
is as

follows:

Cmp(F, G̃)b
a1...,an

def
=

(c11 · · ·c1n, . . .ck1 . . .ckn,b1 . . .bk)
initialize a1(X1).a2(X2). · · · .an(Xn).(

first compute each lG with ports c11X1. · · · .c1nXn | 1Gb1
c11...c1n

| . . .
cl1 . . .cln and bl , ck1X1. · · · .cknXn | kGbk

ck1...ckn
|

then compute F and output Fb
b1...bk

)

5. Recursion. Suppose F is an n-ary recursive function, G is an (n+2)-ary recursive function.
Then the (n+1)-ary function H defined in the following way is a recursive function: H(x̃,0) =
F(x̃), H(x̃,n+1) = G(H(x̃,n), x̃,n). Then we have its Πd interpretation Rec(F,G)b

a1,...,an,a as

Rec(F,G)b
a1...an,a

def
=

(c1 . . .cn,d,e, f ,g,h)a1(X1).an(Xn).a(X)

initialize (!c1X1.cnXn | dX | F f
c1...cn |

increase from zero and try g�0� | !Sucg
e |

invariance (Y+Z = na) !(i, j,k) f (X).g(Y).d(Z).(Z〈i, j〉 |
non-zero, call G i(Z′).(G f

h,c1...cn,k | kY.eY | hX | dZ′) |
zero j.bX))

6. Minimization. Given an (n+1)-ary recursive function F . The n-ary function defined as μy(F(x̃,y)=
0) is also a recursive function. With the strategy of encoding recursion available, the minimization

8

should be easy to understand.

μ(F)b
a1...an

def
=

(c1 . . .cn,d,e, f ,g)a1(X1).a2(X2).an(Xn)

initialize (c1X1.c2X2. . . .cnXn.d�0� | !F f
c1...,cn,d |

increase and try again !(s.Sucg
e | g(X).dX .eX) | e�0� |

test the value of F !(i, j) f (Y)(Y 〈i, j〉 |
non-zero i.s.c1X1.c2X2. . . .cnXn |

zero, output j.e(X).bX)))

The following proposition establishes the relationship between the recursive functions and its inter-
pretation. Intuitively, it says that they can always deliver the same results to their environment.
Proposition 6. For a k-ary recursive function f (x1, . . . ,xk), let Fb

a1,...,ak
be its interpretation in Πd ac-

cording to the above schema. Then on any input (n1, . . . ,nk), if f (n1, . . . ,nk) = m then

(a1, . . . ,ak)(Fb
a1,...,ak

| a1(�n1�) | . . . | ak(�nk�)) =
⇑
Πd b(�m�);

and if f (n1, . . . ,nk) is undefined then

(a1, . . . ,ak)(Fb
a1,...,ak

| a1(�n1�) | . . . | ak(�nk�)) =
⇑
Πd !τ.

The proof of the proposition above is by induction on the construction of the recursive functions.
The proposition below states that the property of the above interpretation schema (note here we make a
little abuse of the word encode as we will show that actually the above interpretation satisfies all but the
back operational correspondence).
Proposition 7. There is a sound and complete encoding from C to Πd.

The soundness and completeness of the above encoding schema are examined with respect to ≡C and
=⇑

Πd . Soundness follows easily from the fact that if two C processes are structural congruent then their
encodings are bisimilar. For completeness, suppose for a contradiction that there exist some P,Q such
that [[P]] =Πd [[Q]] but P �≡C Q. As the encoding scheme has ensured that the encoding does not introduce
extra divergence, from P �≡C Q we know that there exists a process E of C-calculus s.t. P|E =⇒U , where
U is an unobservable process (0 or Ω), while Q|E will not evolve to an unobservable process. Then it
would follow that [[P|E]] �=Πd [[Q|E]], which implies [[P]] �=Πd [[Q]] and contradicts the precondition. More
discussion about E and U can be found in the proof of Theorem 4. Finally, according to the encoding,
every computation step taken by some recursive function is realized by finite many internal steps, so the
encoding is divergence-reflecting.

It is straightforward to see that the encoding also satisfies all the static criteria: it is a structural en-
coding and does not introduce any new free names other than the (outmost) input/output channel names.
The validity of the forth operational correspondence follows directly from the encoding scheme, which
utilizes local names to realize the computation stepwise. The silent actions involved in the realization do
not change the state of the processes (i.e. the intermediate processes are equivalent). However, generally
the back operational correspondence would not be true. For example, for some C process P with the
input ability, one cannot predicate what might be transferred through the corresponding input channel of
its encoding �P�. Any Πd process could be the object of the input, not just those which encode natural
numbers. Such kind of inputs could render P unable to match the subsequent steps of �P�.
Remark 8. As a matter of fact, the above encoding satisfies the so-called subbisimilarity relation in [5],
where one finds a comparative work about the computation completeness of π , and from which our
encoding borrows some idea.

9

4 Expressiveness

This section formulates two encodings between π and Πd . We will explain the encoding strategy
(with examples) and discuss their properties.

4.1 Encoding π in Πd

A central point here is how to mimic a π name (say u), which may engage in both input and output.
To do this, we consult the encoding idea from [17] (the relationship between name-parameterization and
relabelling remains open however), and use the following gadget called pipe that is a 3-ary abstraction.

u–pipe def
= 〈x1,x2,x3〉(x1.u(Z).x3Z.0 |x2.x3(Z).uZ.0) x1,x2,x3 fresh

Intuitively, x1,x2 are to be instantiated by some local constants for receiving signals respectively indicat-
ing whether an input or output action is going to happen on the pipe. Parameter x3 is to be instantiated by
an auxiliary local name for ferrying the content of a prospective communication through the pipe. The
encoding is illustrated in Figure 1. Every π name is corresponded to a process variable. Specifically,

[[0]]1 def
= 0

[[u(x).P]]1 def
= (i)(o)(c)(Xu〈i,o,c〉 | i.c(Xx).[[P]]1)

[[uv.P]]1 def
= (i)(o)(c)(Xu〈i,o,c〉 |o.cXv.[[P]]1)

[[P |Q]]1
def
= [[P]]1 | [[Q]]1

[[(d)P]]1 def
= (d)([[P]]1{d–pipe/Xd})

[[!P]]1 def
= ![[P]]1 (!P is guarded replication)

[[P]] def
= [[P]]1{a1–pipe/Xa1}· · ·{an–pipe/Xan}

Figure 1: Encoding from π to Πd

we assume a one-to-one mapping from n(P)={u1, ...,uk} to {Xu1 , ...,Xuk}=v([[P]]1). We thus have the
following corresponding in the encoding.

• Every free name constant (e.g. a) is mapped to a free process variable (e.g. Xa) in [[]]1 that is then
instantiated by the pipe (e.g. a–pipe) corresponding to this free name constant in [[]].

• Every bound name constant (e.g. d in (d)P) is mapped to a free process variable (e.g. Xd) that is
instantiated by the pipe (e.g. d–pipe) corresponding to this bound name constant in [[]]1, where the
name d in the pipe (e.g. d–pipe) is still bound. Bound/Local π name constants are allotted pipes
in [[]]1 rather than in [[]] because they are essentially distinct from free name constants.

• Every (input-prefix) bound name variable (e.g. x) is mapped to a process variable (e.g. Xx) in [[]]1,
where the process variable (e.g. Xx) is bound and to be instantiated by an inputted process (i.e.
a pipe). Note an input-bounded name variable in P is not replaced immediately since it must be
determined through communication.

10

The part needing explanation is those concerning the prefixes. In principle, prefixes are interpreted in
the following way: one first decides how to use the pipe (i.e. input or output); then through several
internal communication on the auxiliary names (i,o,c), the first-order communication in π is encoded
by a communication in Πd . For instance, in [[u(x).P]]1, u maps to Xu that is to be substituted by u–pipe,
is notified on i that an input action is engaged, then the real input action on u occurs in u–pipe, and the
received process (another pipe) is relayed through c to the rest of the process undergoing encoding. We
present an example in [19] (for the sake of space).

Properties of the encoding One can see that the static conditions are naturally met. Then an observa-
tion is the following lemma (Lemma 9) whose proof is a structure induction.

Lemma 9. The following action correspondence from the encoding holds: (1) If P
a(b)−−→ P′, then

[[P]] τ−→ a(b–pipe)−−−−−→ τ−→ [[P′]]; (2) If P ab−→ P′, then [[P]] τ−→ τ−→ a[b–pipe]−−−−−→ [[P′]]; (3) If P
a(b)−−→ P′, then

[[P]] τ−→ τ−→ (b)a[b–pipe]−−−−−−→ [[P′]]; (4) If P τττ−→ P′, then [[P]] τ−→ τ−→ τ−→ τττ−→ τ−→ [[P′]].

Notice that in Lemma 9(4), the two τττ’s exactly correspond with each other, which means that in the
five consecutive τ actions of [[P]], the fourth τ is the one that actually comes from process P, and the
others are auxiliary ones brought about by the encoding. Based on this observation and a (transition)
induction, we have the operational correspondence (Lemma 10 and Lemma 11).

Lemma 10. Suppose P,Q are π processes. Then the following properties hold: (1) If P
a(b)
==⇒P′, then

[[P]]
a(b–pipe)
=====⇒[[P′]]; (2) If P ab

==⇒P′, then [[P]]
a[b–pipe]
=====⇒[[P′]]; (3) If P

a(b)
==⇒P′, then [[P]]

(b)a[b–pipe]
=======⇒[[P′]]; (4) If

P τ
==⇒P′, then [[P]] τ

==⇒[[P′]].

Lemma 11. Suppose P,Q are π processes. The following properties hold:

(1) If [[P]]
a(b–pipe)
=====⇒T , then P

a(b)
==⇒P′ for some P′ and T =Πd [[P′]];

(2) If [[P]]
a[b–pipe]
=====⇒T , then P ab

==⇒P′ for some P′ and T =Πd [[P′]];

(3) If [[P]]
(b)a[b–pipe]
=======⇒T , then P

a(b)
==⇒P′ for some P′ and T =Πd [[P′]];

(4) If [[P]] τ
==⇒T , then: if the weak transition contains solely silent actions on the auxiliary names (i.e.

i′,o′,c′) it holds T =Πd [[P′]]; otherwise P τ
==⇒P′ for some P′ and T =Πd [[P′]].

Completeness The encoding is complete with respect to =π and =Πd .

Lemma 12. Let P,Q be π processes. [[P]] =Πd [[Q]] implies P =π Q.

To prove Lemma 12, we firstly use the ‘total’ property of the encoding. i.e., every ‘context’ C of π ,
going through the encoding, is corresponded by a context D ≡ [[C]] in Πd . Secondly, we take advantage
of the characterization of weak bisimilarity in π (i.e. local bisimilarity). We detail the proof in [19].

Soundness One would expect the encoding is sound with respect to =π and =Πd . Unfortunately, this
is still unknown, but we do have somewhat an approximation.

Lemma 13. Let P,Q be π processes. P =π Q implies [[P]] ≈p [[Q]].

The equivalence ≈p is defined as below.

Definition 14. A symmetric relation R on Πd processes is a pipe-bisimulation, if whenever PRQ, the
following properties hold.

11

• If P
a(f–pipe)−−−−−→P′, then Q

a(f–pipe)
=====⇒Q′ for some Q′ and P′RQ′;

• If P
(c̃)a[f–pipe]−−−−−−→P′ then Q

(d̃)a[f–pipe]
======⇒Q′ for some d̃,Q′, and for every process E[X] s.t. c̃d̃∩ f n(E)= /0

it holds that (c̃)(E[f–pipe] |P′) R (d̃)(E[f–pipe] |Q′).

• If P τ−→P′, then Q==⇒Q′ for some Q′ and P′RQ′;

Pipe-bisimilarity ≈p is the largest pipe-bisimulation.

To prove Lemma 13, a crucial point is on the matching of higher-order input. That is, we need to
prove the following (notice a dotted line means the two processes connected vertically by it are related
by the relation marked beside the line, and the squiggly arrow reads ‘implies’).

[[P]]

R

a(d–pipe) �� S1{d–pipe/X}
Δ

�� P
a(d) ��

=π

P′

=π

[[Q]]
a(d–pipe) �� T1{d–pipe/X} Q

a(d) ���� Q′

where R
def
= {([[P]], [[Q]]) | P =π Q}. Then one can derive Δ which indicates the relating of S1{d–pipe/X}

and T1{d–pipe/X} by R. That said, a desired result would be that ≈p⊆=Πd . Yet this remains an open
issue.

Divergence-reflecting The encoding is not divergence-reflecting because in the encoding of the repli-
cation a prefix can wait for an infinite number of τ actions occurring on auxiliary names (i,o,c), thus
introducing divergence. However this can be fixed by adjusting the definition of replication as below (we
define the case of input-guarded replication, and output-guarded replication is similar). This adjustment
simply postpones the production of another copy of the replication until the visible action fires, and thus
would not change other properties.

�!u(x).P�
def
= (d)(Qd |dQd) where

Qd
def
= d(Z).((i)(o)(c)(Xu〈i,o,c〉 | i.c(Xx).(Z |�P�) |dZ)

4.2 Encoding Πd in π

This section presents an encoding from Πd to π . The encoding exploits the idea of triggers [13] [12]
[16]. The difference from the encodings in these work is three-fold: First, Πd is a purely higher-order
calculus (i.e. no name-passing) and has solely parameterization on names (not involving parameteriza-
tion on processes); second, π has no parameterization itself; third, Πd has general name-parameterization
(i.e. arbitrary arity). Such difference makes the encoding here more appealing in addition to its design
idea.

We provide the encoding in Figure 2. In the encoding, we assume every name variable in a Πd pro-
cess is mapped to the same variable in π , for example, x in 〈x〉P to x; and every process variable in a
Πd process is mapped to a name variable (in lowercase), for example X to x. α-conversion is applied
if needed. The central part of the encoding strategy resides on how to translate the scenario concern-
ing the communication of a parameterized process, i.e. the transmission of a process of the form 〈x̃〉P
that is going to instantiate a variable, say X , in the receiving environment, which has an input-guarded
(sub)process like X〈d̃〉 that then undergoes the application on the parameterized names.

12

[[0]] def
= 0

[[u(X).P]] def
= u(x).[[P]]

[[uQ.P]] def
= (f)(u f .[[P]] |T),

T def
=

{
! f (z).z(x1).z(x2) · · ·z(xn).[[Q′]] if Q ≡ 〈x1, ...xn〉Q′

! f .[[Q]] otherwise (n = 0)
T is sometimes simply abbreviated as ! f̃ (x).[[Q]]

[[P |Q]]
def
= [[P]] | [[Q]]

[[(c)P]] def
= (c)[[P]]

[[〈x1, ...,xn〉P]] def
= [[P]]

[[X〈d1, ...,dn〉]] def
=

{
x(g).gd1.gd2 · · ·gdn if n �= 0
x otherwise

Figure 2: Encoding from Πd to π

In the translation of output, the internal channel f (the trigger name) is the access point to the (pa-
rameterized) process to be transmitted, whose instantiation of the parameters is realized through f (and
g), whenever an application happens. Notice the process transmitted, of the form 〈x̃〉P in general, is
translated into an open process [[P]], and thus to receive the constant names through f (and g) to in-
stantiate the name variables in [[P]]. During the reception of the constant names, the private channel
established on local name g is used to ensure no intervention will occur when encoding a process like
a(X).(X〈d1〉 |X〈d2〉), and this is akin to translating polyadic communication in a sense. There is a special
case that Q is not a parameterized process (|x̃ |= 0).

Moreover, merely X〈d̃〉 is defined rather than the general form P〈d̃〉, because in the latter the applica-
tion can be immediately fired if the process P is correctly defined, resulting in a process not parameterized
outmost. The definition of the encoding of X〈d̃〉 is to successively convey, through g, the constant names
for instantiating the name variables in a prospective communicated process at the access point x, which
will be instantiated by a trigger name (e.g. f). A special case is n = 0, when X is simply encoded as x.
The rest part of the encoding is defined in a homomorphic way. To help understand the encoding, we
provide an example in [19].

Properties of the encoding A straightforward observation of the encoding is that it is compositional
and name-preserving. Meanwhile the encoding is divergence-reflecting because it does not introduce
divergence. Lemma 15 and Lemma 16 clarify the operational correspondence of the encoding. Their
proofs are by induction on the transition of P (or [[P]]).

Lemma 15. Let P be a Πd process.

(1) If P
(c̃)aA
===⇒P′, then [[P]]

a(f)
==⇒(c̃)([[P′]] | ! f̃ (x).[[A]]). Recall f̃ (x) is

f (z).z(x1).z(x2) · · ·z(xn) if A ≡ 〈x1,x2, ...,xn〉A′, or f if n = 0 (i.e. A is not parameterized).

(2) If P
a(A)
==⇒P′, and thus there exists some E[X] s.t. P′ ≡ E[A].

Then [[P]]
a(f)
==⇒[[E]]{ f/x} and (f)([[E]]{ f/x}| ! f̃ (x).[[A]]) =π [[P′]].

(3) If P τ
==⇒P′, then there exists T s.t. [[P]] τ

==⇒T =π [[P′]]

13

Lemma 16. Let P be a Πd process.

(1) If [[P]]
a(f)
==⇒T , then P

(c̃)aA
===⇒P′ for some A,P′, c̃, and T =π (c̃)([[P′]] | ! f̃ (x).[[A]]).

(2) If [[P]]
a(f)
==⇒T , then P

a(A)
==⇒E[A] for some E[X] s.t. T =π [[E]]{ f/x}, and

(f)(T | ! f̃ (x).[[A]]) =π [[E[A]]].

(3) If [[P]] τ
==⇒T , then P τ

==⇒P′ for some P′, and [[P′]] =π T .

Completeness and soundness The encoding is complete and sound with respect to =Πd and =π .

Lemma 17. Let P,Q be Πd processes. P =Πd Q iff [[P]] =π [[Q]].

The proof of completeness can be done by showing the relation {(P,Q) | [[P]] =π [[Q]]}∪ =Πd to be
a context bisimulation up-to =Πd , using Lemma 15 and Lemma 16 to move back and forth in action
correspondence. The proof of soundness is a bit more complicated and can be conducted by showing
the following relation {([[P]], [[Q]]) | P =Πd Q}∪ =π to be a weak bisimulation up-to injective substitu-
tion and =π [16], with the help of Lemma 15 and Lemma 16 in pinpointing the action before and after
the encoding. The up-to technique is a method of simplifying the design of the relation toward prov-
ing bisimulation equivalence (see [16] [15]). Base upon the discussion above, we have the following
proposition.

Proposition 18. There is an encoding from Πd to π .

5 Conclusion

In this paper, we have studied from two computation angles the name parameterization in a higher-
order setting. First is about the computation completeness. We show that there is a sound and complete
embedding of an elementary model C with built-in recursive functions into the higher-order pi-calculus
with name parameterization. This method actually can be extended to other concurrency formalism.
Second is about relative expressiveness. We provide the mutual encodings between π and higher-order
pi-calculus with name parameterization. We discuss the properties with respect to well-known criteria
for encodings. They offer insight into the position of these calculi in the expressiveness hierarchy as well
as some programming skills. Some further work include, among others: examining further to refine the
properties concerning the encoding from π to Πd ; studying the computation completeness of ΠD (i.e.
higher-order pi-calculus with parameterization on processes themselves) and comparing it further with
Πd .

References
[1] H. P. Barendregt (1984): The Lambda Calculus—Its Syntax and Semantics. North-Holland.
[2] Nigel Cutland (1980): Computability: An Introduction to Recursive Function Theory. Cambridge University

Press.
[3] U. H. Engberg & M. Nielsen (1986): A Calculus of Communicating Systems with Label Passing. Technical

Report DAIMI PB-208, Computer Science Department, University of Aarhus. Available at http://www.
daimi.aau.dk/PB/208/.

[4] U. H. Engberg & M. Nielsen (2000): A Calculus of Communicating Systems with Label Passing - Ten Years
After. In: Proof, Language, and Interaction: Essays in Honour of Robin Milner, MIT Press Cambridge, pp.
599–622.

14

[5] Yuxi Fu: Theory of interaction. Theoretical Computer Science, under revision. Available at http:

//basics.sjtu.edu.cn/~yuxi/papers/TheoryofInteraction.pdf.
[6] Yuxi Fu (2005): On Quasi Open Bisimulation. Theoretical Computer Science 338(1-3), pp. 96–126.
[7] Yuxi Fu & Hao Lu (2010): On the Expressiveness of Interaction. Theoretical Computer Science 411, pp.

1387–1451.
[8] D. Gorla (2008): Towards a Unified Approach to Encodability and Separation Results for Process Calculi.

In: Proceedings of CONCUR’ 08, LNCS 5201, Springer Verlag, pp. 492–507.
[9] I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2010): On the Expressiveness of Polyadic and Synchronous

Communication in Higher-Order Process Calculi. In: Proceedings of ICALP 2010, LNCS, Springer Verlag,
pp. 442–453, doi:10.1007/978-3-642-14162-1 37.

[10] I. Lanese, J. A. Pérez, D. Sangiorgi & A. Schmitt (2011): On the Expressiveness and Decidability of Higher-
Order Process Calculi. Information and Computation 209(2), pp. 198–226, doi:10.1016/j.ic.2010.10.001.

[11] R. Milner, J. Parrow & D. Walker (1992): A Calculus of Mobile Processes (Parts I and II). Information and
Computation 100(1), pp. 1–77.

[12] D. Sangiorgi (1992): Expressing Mobility in Process Algebras: First-order and Higher-order Paradigms.
Phd thesis, University of Edinburgh.

[13] D. Sangiorgi (1992): From π-Calculus to Higher-Order π-Calculus—and Back. In: Proceedings of TAP-
SOFT ’93, LNCS 668, Springer Verlag, pp. 151–166, doi:10.1007/3-540-56610-4 62.

[14] D. Sangiorgi (1996): Bisimulation for Higher-order Process Calculi. Information and Computation 131(2),
pp. 141–178, doi:10.1006/inco.1996.0096.

[15] D. Sangiorgi (1998): On the Bisimulation Proof Method. Mathematical Structures in Computer Science 8(6),
pp. 447–479, doi:10.1017/S0960129598002527.

[16] D. Sangiorgi & D. Walker (2001): The Pi-calculus: a Theory of Mobile Processes. Cambridge Universtity
Press.

[17] B. Thomsen (1993): Plain CHOCS, a Second Generation Calculus for Higher-Order Processes. Acta Infor-
matica 30(1), pp. 1–59, doi:10.1007/BF01200262.

[18] Xian Xu (2012): Distinguishing and Relating Higher-order and First-order Processes by Expressiveness.
Acta Informatica 49(7-8), pp. 445–484, doi:10.1007/s00236-012-0168-9.

[19] Xian Xu, Qiang Yin & Huan Long: On the Computation Power of Name Parameterization in Higher-order
Processes. Available at http://basics.sjtu.edu.cn/~yin/Papers/ice15.pdf. Online version (with
appendix) of the ICE 2015 paper.

[20] Xian Xu, Qiang Yin & Huan Long (2013): On the Expressiveness of Parameterization in Process-passing.
In: Proceedings of the 10th International Workshop on Web Services and Formal Methods, LNCS 8739,
Springer Verlag, pp. 147–167.

