
Submitted to:
ICE 2015

c© A. Mavridou, E. Baranov, S. Bliudze & J. Sifakis
This work is licensed under the
Creative Commons Attribution License.

Configuration Logic—Modelling Architecture Styles

Anastasia Mavridou Eduard Baranov Simon Bliudze Joseph Sifakis
École polytechnique fédérale de Lausanne, Station 14, 1015 Lausanne, Switzerland

firstname.lastname@epfl.ch

We study a framework for the specification of architecture styles as families of architectures involv-
ing a common set of types of components and coordination mechanisms. The framework combines
two logics: 1) interaction logic for the specification of architectures as generic coordination schemes
involving a configuration of interactions between typed components; 2) configuration logic for the
specification of architecture styles as sets of interaction configurations. Our results build on previ-
ous work on architecture modelling in BIP. We show how the propositional interaction logic can be
extended to a corresponding configuration logic by adding new operators on sets of interaction con-
figurations. We provide a complete axiomatisation of the propositional configuration logic, as well
as a procedure for deriving a normal form for any formula. To allow genericity of specifications, we
study first-order and second-order extensions of the propositional configuration logic.

1 Introduction

Architecture styles characterize not a single architecture but a family of architectures sharing common
characteristics such as the type of the involved components and the topology induced by their coordina-
tion structure. Simple examples of architecture styles are Pipeline, Ring, Master/Slave, Pipe and Filter.
For instance, Master/Slave architectures integrate two types of components, masters and slaves such that
each slave can interact only with one master. Figure 1 depicts four Master/Slave architectures involving
master components M1, M2 and slave components S1, S2. Their communication ports are respectively
m1, m2 and s1, s2. The architectures correspond to interaction configurations:

{
{s1,m1},{s2,m2}

}
,{

{s1,m1},{s2,m1}
}

,
{
{s1,m2},{s2,m1}

}
and

{
{s1,m2},{s2,m2}

}
. The set {si,m j} denotes an inter-

action between ports si and m j. A configuration is a non-empty set of interactions. The Master/Slave
architecture style characterizes all the such architectures for arbitrary numbers of masters and slaves.

m1 m2

s1 s2

M2

S2

M1

S1

{{s1,m1},{s2,m2}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m1},{s2,m1}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m2},{s2,m1}}

m1 m2

s1 s2

M2

S1 S2

M1

{{s1,m2},{s2,m2}}

Figure 1: Master/Slave architectures
The relation between architectures and architecture styles is similar to the relation between programs

and their specifications. As program specifications can be expressed by using logics, e.g. temporal
logics, architecture styles can be specified by configuration logics characterizing classes of architectures.

We define the propositional configuration logic (PCL) whose formulas represent, for a given set
of components, the allowed configuration sets. A configuration on a set of components represents a
particular architecture. Defining configuration logics requires considering three hierarchically structured
semantic domains: the lattices of interactions, configurations and configuration sets. An interaction is an

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Configuration Logic—Modelling Architecture Styles

(a) I(P) = 2P (b) C(P) = 2I(P)\{ /0} (c) CS(P) = 2C(P)\{ /0}

Figure 2: Lattices of interactions (a), configurations (b) and configuration sets (c) for P = {p,q}.

n-ary connector between ports. Configurations are sets of interactions characterizing architectures. Sets
of configurations are properties described by the configuration logic. Figure 2 shows the three lattices
for P = {p,q}. We only show the generators of the lattice of configuration sets.

This work consistently extends results on modelling architectures by using propositional interaction
logics [4, 5, 6], which are Boolean algebras on the set of ports P of the composed components. Their
semantics is defined via a satisfaction relation between interactions and formulas. An interaction a ⊆ P
satisfies a formula φ (we write a |=i φ) if φ evaluates to true for the valuation that assigns true to the
ports belonging to a and false otherwise. It is characterized exactly by the formula

∧
p∈a p∧

∧
p6∈a p .

Configuration logic is a powerset extension of interaction logic. Its formulas are generated from
the formulas of the propositional interaction logic by using the operators union ⊕ , complementation
¬ and coalescing +. Its semantics is defined via a satisfaction relation |= between configurations γ =
{a1, . . . ,an} and formulas. For a PIL formula f , we define γ |= f iff a |=i f , for all a∈ γ . For set-theoretic
operators, we take the standard meaning. The formula f1 + f2 represents configurations γ obtained as
the union of configurations of f1 with configurations of f2, i.e. γ |= f1 + f2 iff γ can be decomposed as
γ = γ1 ∪ γ2, such that γ1 |= f1 and γ2 |= f2. Formulas of the form f + true present a particular interest
for writing specifications. Their characteristic configuration set is the set of all configurations, each
containing a subset of interactions satisfying f . Despite its apparent complexity, configuration logic is
easy to use because of its stratified construction.

We provide a full axiomatization of the propositional configuration logic and a normal form similar
to the disjunctive normal form in Boolean algebras. The existence of such normal form implies the
decidability of formula equality and of satisfaction of a formula by an architecture model.

To allow genericity of specifications, we study first-order and second-order extensions of the propo-
sitional configuration logic. First-order logic formulas involve quantification over component variables.
Second-order logic formulas involve additionally quantification over sets of components. Second-order
logic is needed to express interesting topological properties, e.g. the existence of interaction cycles.

A complete presentation with proofs and additional examples illustrating the results discussed here
can be found in the technical report [10].

2 Propositional configuration logic

The propositional configuration logic (PCL), is an extension of the propositional interaction logic (PIL),
which was studied in [4, 5]. PIL is a Boolean logic used to characterize the interactions between com-
ponents on a global set of ports P. Interactions are non-empty sets of ports /0 6= a⊆ P. PIL is defined by
the following grammar:

φ ::= true | p ∈ P | φ | φ ∨φ | φ ∧φ .

A. Mavridou, E. Baranov, S. Bliudze & J. Sifakis 3

To simplify the notation, we omit conjunction in monomials, e.g. writing pqr instead of p∧q∧ r.
Semantics. The meaning of a PIL formula φ is defined by the following satisfaction relation. Let /0 6=
a⊆ P be an interaction. We define: a |=i φ iff φ evaluates to true for the valuation p = true, for all p∈ a,
and p = false, for all p 6∈ a.

PCL is an extension of PIL defined by the grammar

f ::= true | m | ¬ f | f + f | f ∨ f | f ⊕ f ,

where m is a PIL monomial, ⊕ is the union operator, ∨ is the disjunction operator, + is the coalescing

operator and ¬ is the complementation operator. As usual, we write f1⇒ f2
de f
= ¬ f1 ⊕ f2.

The language of PCL formulas is generated from PIL formulas—in the form of disjunctions of mono-
mials. In contrast to PIL formulas which represent interaction sets, PCL formulas represent configuration
sets, where a configuration is a non-empty set of interactions. Let P be a set of ports. The semantic do-
main of PCL is the lattice of configuration sets CS(P) = 2C(P)\{ /0} (Figure 2(c)).
Semantics. The meaning of a PCL formula f is defined by the following satisfaction relation. Let
/0 6= γ ∈C(P) be a configuration. We define:

γ |= true, for all γ ,

γ |= m, if ∀a ∈ γ,a |=i m (where |=i is the satisfaction relation of PIL),

γ |= f1 + f2, if there exist γ1,γ2 ∈C(P)\{ /0}, such that γ = γ1∪ γ2, γ1 |= f1 and γ2 |= f2,

γ |= f1 ⊕ f2, if γ |= f1 or γ |= f2,

γ |= f1∨ f2, if γ |= f1 + f2 or γ |= f1 ⊕ f2,

γ |= ¬ f , if γ 6|= f (i.e. γ |= f does not hold).

Two formulas are equal f1 = f2 iff, for all /0 6= γ ∈C(P), γ |= f1⇔ γ |= f2.
Proposition 2.1. Equality is a congruence w.r.t. to all PCL operations.

PCL syntax does not allow direct representation of all PIL formulas. Nonetheless, any PIL formula
can be put in the disjunctive normal form—a syntactically correct PCL formula. We call interaction
formulas those PCL formulas that are also syntactically PIL formulas. We have shown that PCL is a
conservative extension of PIL, i.e. the meaning of an interaction formula in PIL is the same as in PCL.

Coalescing + is the key operator in PCL. It combines configurations, as opposed to the union operator
⊕ , which combines configuration sets. Coalescing is associative, commutative, idempotent and has

an absorbing element false
de f
= ¬true. Coalescing with true presents a particular interest for writing

specifications, since they allow adding any set of interactions to the configurations satisfying f . For any

formula f , the closure operator ∼ is defined by putting ∼ f
de f
= f + true.

Proposition 2.2. For any formula f , holds the equality ∼∼ f = ∼ f .
The closure operator can be interpreted as a modal operator with existential quantification. The

formula ∼ f characterizes configurations γ , such that there exists a sub-configuration of γ satisfying f .
Thus,∼ f means “possible f ”. Dually¬∼¬ f means “always f ” in the following sense: if a configuration
γ satisfies ¬ ∼¬ f , all sub-configurations of γ satisfy f . Below, we show that, for an interaction formula
f , holds the equality∼¬ f =¬ f , which implies ¬∼¬ f =¬¬ f = f . However, this is not true in general.

The following proposition allows us to address the relation between complementation and negation.
Indeed, complementation is not an extension of PIL negation. Furthermore, PIL negation cannot be
applied directly to an arbitrary PCL formula. However, for any interaction formula f =

∨
i∈I mi, its

negation f can be put in the form of disjunction of monomials and considered as a formula of PCL.

4 Configuration Logic—Modelling Architecture Styles

Proposition 2.3. For any interaction formula f , holds f ⊕ f ⊕ (f + f) = true.

The three terms on the left are mutually disjoint. Thus, for any interaction formula f , we have
¬ f = f ⊕ (f + f) = f + true = ∼ f and, consequently, ¬ f = ∼ f and ∼¬ f = ¬ f .

In [10], we present a sound and complete axiomatization of the PCL equality =, which allows us to
define a normal form for PCL formulas. The existence of such a normal form immediately implies the
decidability of 1) the equality of two PCL formulas and 2) the satisfaction of a formula by a configuration.

Definition 2.4. A formula is in normal form iff it has the form
⊕

i∈I ∑ j∈Ji mi, j, with all mi, j monomials.

In order to specify rich and flexible architecture styles, we extend PCL to first and second order,
introducing quantification over component and component-set variables, respectively. We assume that all
components in the system have types representing their interfaces. Notation c :T means that component
c has type T ; C : T means that all components belonging to C are of type T . Let T be the set of all
types. We denote c.P the set of ports of the component c. Similarly, we write c.p to denote the port p of
component c. The following notation expresses an exact interaction, i.e. all ports in the arguments must
participate in the interaction and all other ports of the system cannot participate in the interaction:

](c1.p1, . . . ,cn.pn)
de f
=

∧
i∈[1,n]

ci.pi ∧
∧

i∈[1,n]

∧
p∈ci.P\{pi}

ci.p ∧
∧

T∈T

(
∀c :T (c 6∈ {c1, . . . ,cn}).

∧
p∈c.P

c.p
)
.

Example 2.5 (Star). One central component s is connected to every other component through a binary
interaction and there are no other interactions:

∃s :T. ∀c :T (c 6= s).
(
∼(c.p s.p) ∧ ∀c′ :T

(
c′ 6∈ {c,s}

)
. (c′.p ∨ c.p)

)
∧
(
∀c :T. ¬ ∼](c.p)

)
.

The three conjuncts of this formula express respectively the properties: 1) any component is con-
nected to s; 2) components other than s are not connected; and 3) unary interactions are forbidden.

Example 2.6 (Pipes and Filters). Consider two types of components, P and F , each having two ports in
and out. Each input (resp. output) of a filter is connected to an output (resp. input) of a single pipe; the
output of any pipe can be connected to at most one filter:

∀ f :F. ∃p :P. ∼(f .in p.out)∧ ∀p′ :P(p 6= p′).
(

f .in ∨ p′.out
)
∧

∀ f :F. ∃p :P. ∼(f .out p.in)∧ ∀p′ :P(p 6= p′).
(

f .out ∨ p′.in
)
∧

∀p :P. ∃ f :F. ∀ f ′ :F(f 6= f ′). (p.out ∨ f ′.in) .

Example 2.7 (Ring). All components form a single ring by connecting their in and out ports:(
Σc :T. ∃c′ :T (c 6= c′).](c.in c′.out)+Σc :T. ∃c′ :T (c 6= c′).](c.out c′.in)

)
∧ ∀C :T. ∀c :T (c 6∈C).

(
∃c′ :T (c′ ∈C). ∃c′′ :T (c′′ 6∈C). ∼(c′.in c′′.out)

)
.

3 Discussion and related work

A plethora of approaches exist for characterizing architecture styles. Among the formal approaches for
representing and analysing architecture descriptions, we distinguish two main categories:

Extensional approaches. Every object needed for the specification, i.e. the connections inducing inter-
actions among the components, is explicitly defined. All connections, other than the ones specified,
are excluded. Most ADLs, for instance SOFA [9], Wright [2], XCD [11], adopt this approach.

A. Mavridou, E. Baranov, S. Bliudze & J. Sifakis 5

Intentional approaches: Connections among the components are not explicitly specified, but derived
from a set of logical constraints, formulating the intentions of the designer.

The proposed framework encompasses both approaches. It allows individual interactions, e.g. by
using interaction formulas. It also allows specification of configuration sets, e.g. by using formulas
of the form ∼ f . The proposed framework has similarities but also significant differences with work on
Darwin [8] and ACME [7], where Alloy[1] is used to specify and check architecture topologies. It differs
in that it achieves a strong semantic integration between architectures and architecture styles.

The presented work is a contribution to a long-term research program that aims at developing the BIP
component framework. So far the theoretical work has focused on the study of expressive composition
frameworks and their algebraic and logical formalization. This led in particular, to the formalization of
architectures as a generic coordination schemes applied to sets of components in order to enforce a given
global property [3]. The presented work nicely complements the existing component framework with
logics for the specification of architecture styles. Quantification over components and sets of components
allows the genericity needed for architecture styles. In future work, we will extend the theoretical results
in two directions. First, to allow data transfer specification associated with interactions. Second, to allow
description of hierarchically structured interactions.

References
[1] Alloy. http://alloy.mit.edu/alloy/.
[2] R. Allen & D. Garlan (1994): Formalizing architectural connection. In: Proceedings of the 16th international

conference on Software engineering, IEEE Computer Society Press, pp. 71–80.
[3] P. Attie, E. Baranov, S. Bliudze, M. Jaber & J. Sifakis (2014): A General Framework for Architecture Com-

posability. In: SEFM 2014, LNCS 8702, Springer, pp. 128–143.
[4] S. Bliudze & J. Sifakis (2008): The Algebra of Connectors—Structuring Interaction in BIP. IEEE Transac-

tions on Computers 57(10), pp. 1315–1330, doi:10.1109/TC.2008.26.
[5] S. Bliudze & J. Sifakis (2010): Causal semantics for the algebra of connectors. FMSD 36(2), pp. 167–194.
[6] S. Bliudze & J. Sifakis (2011): Synthesizing Glue Operators from Glue Constraints for the Construction of

Component-Based Systems. In: SC’11, LNCS 6708, Springer, pp. 51–67, doi:10.1007/978-3-642-22045-6 4.
[7] D. Garlan, R. Monroe & D. Wile (1997): Acme: An Architecture Description Interchange Language. In:

CASCON ’97, IBM Press, pp. 159–173.
[8] I. Georgiadis, J. Magee & J. Kramer (2002): Self-organising software architectures for distributed systems.

In: Proc of the 1st workshop on Self-healing systems, ACM, pp. 33–38.
[9] T. Kalibera & P. Tuma (2002): Distributed component system based on architecture description: The Sofa

experience. In: On the Move to Meaningful Internet Systems 2002, Springer, pp. 981–994.
[10] A. Mavridou, E. Baranov, S. Bliudze & J. Sifakis (2015): Configuration Logics - Modelling Architecture

Styles. Technical Report EPFL-REPORT-206825, EPFL IC IIF RiSD. Available at: http://infoscience.
epfl.ch/record/206825; paper submitted to SEFM 2015.

[11] M. Ozkaya & Ch. Kloukinas (2014): Design-by-contract for reusable components and realizable architec-
tures. In: CBSE’14, ACM, pp. 129–138.

http://alloy.mit.edu/alloy/
http://dx.doi.org/10.1109/TC.2008.26
http://dx.doi.org/10.1007/978-3-642-22045-6_4
http://infoscience.epfl.ch/record/206825
http://infoscience.epfl.ch/record/206825

	Introduction
	Propositional configuration logic
	Discussion and related work

