Executable Behaviours and the π **-Calculus**

Bas Luttik Fei Yang

Technische Universiteit **Eindhoven** University of Technology

June 5, 2015

Where innovation starts

TU

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π -Calculus Reactive Turing Powerfulness of the π -Calculus Executability of the π -Calculus Processes

Turing machine and Computers

Turing machine and Computers

Church Turing Thesis: every computable function can be computed with a Turing Machine

The CT thesis is sometimes paraphrased as: "A TM can do everything a real computer can do"

The CT thesis is sometimes paraphrased as: "A TM can do everything a real computer can do"

Question: "Is the statement valid for interactive computation?"

The CT thesis is sometimes paraphrased as: "A TM can do everything a real computer can do"

Question: "Is the statement valid for interactive computation?"

The CT thesis is sometimes paraphrased as: "A TM can do everything a real computer can do"

Question: "Is the statement valid for interactive computation?"

A TM cannot fly an aircraft.

The CT thesis is sometimes paraphrased as: "A TM can do everything a real computer can do"

Question: "Is the statement valid for interactive computation?"

A TM cannot fly an aircraft.

But a bunch of reactive computing systems operating concurrently can!

The CT thesis is sometimes paraphrased as: "A TM can do everything a real computer can do"

Question: "Is the statement valid for interactive computation?"

A TM cannot fly an aircraft.

But a bunch of reactive computing systems operating concurrently can!

Concurrency Theory is introduced to study such systems.

Interaction: between parallel components

- Interaction: between parallel components
- Non-termination : infinitely long execution sequence (divergence)

- Interaction: between parallel components
- Non-termination : infinitely long execution sequence (divergence)
- Non-determinism : nondeterministic behaviours

- Interaction: between parallel components
- Non-termination : infinitely long execution sequence (divergence)
- Non-determinism : nondeterministic behaviours

Concurrency Theory + CT Thesis?

- Interaction: between parallel components
- Non-termination : infinitely long execution sequence (divergence)
- Non-determinism : nondeterministic behaviours

Concurrency Theory + CT Thesis?

Concurrency

- Interaction: between parallel components
- Non-termination : infinitely long execution sequence (divergence)
- Non-determinism : nondeterministic behaviours

Concurrency Theory + CT Thesis?

Concurrency +Computability

- Interaction: between parallel components
- Non-termination : infinitely long execution sequence (divergence)
- Non-determinism : nondeterministic behaviours

Concurrency Theory + CT Thesis?

Concurrency + Computability = Executability

Absolute Expressiveness

Given a process calculus:

In classical theory of computability:

- In classical theory of computability:
 - Is it Turing powerful?

- In classical theory of computability:
 - Is it Turing powerful?
 - Is it computable?

- In classical theory of computability:
 - Is it Turing powerful?
 - Is it computable?
- In theory of executability:

- In classical theory of computability:
 - Is it Turing powerful?
 - Is it computable?
- In theory of executability:
 - Is it reactive Turing powerful?

- In classical theory of computability:
 - Is it Turing powerful?
 - Is it computable?
- In theory of executability:
 - Is it reactive Turing powerful?
 - Is it executable?

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π -Calculus Reactive Turing Powerfulness of the π -Calculus Executability of the π -Calculus Processes

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π -Calculus Reactive Turing Powerfulness of the π -Calculus Executability of the π -Calculus Processes

A: set of actions; τ : a special action ($\notin A$), for unobservable actions. $A_{\tau} = A \cup \{\tau\}.$

A reactive Turing machine (RTM) is a classical Turing machine with an action from some set A_{τ} associated with every transition.

So RTMs have two types of transitions:

- 1. $s \stackrel{a[d/e]M}{\longrightarrow} t$ means "externally observable, as execution of a"
- 2. $s \xrightarrow{\tau[d/e]M} t$ means "internal, unobservable transition"

M is ether "moving left" or "moving right"

Labelled Transition System of an RTM

We associate with every configuration (control state, tape instance) a state, and associate with every execution step a labelled transition.

Executability and Behavioural Equivalence

A transition system is called **executable** if it is behaviourally equivalent to the transition system of an RTM.

Executability and Behavioural Equivalence

A transition system is called **executable** if it is behaviourally equivalent to the transition system of an RTM.

The notion of behavioural equivalence is a parameter of executability.

Executability and Behavioural Equivalence

A transition system is called **executable** if it is behaviourally equivalent to the transition system of an RTM.

The notion of behavioural equivalence is a parameter of executability.

We start from (divergence-preserving) branching bisimilarity

Evaluating Expressiveness

Evaluating Expressiveness

 Can we specify every executable LTS by the LTS associated with *P*? (reactive Turing powerfulness?)

Evaluating Expressiveness

- Can we specify every executable LTS by the LTS associated with *P*? (reactive Turing powerfulness?)
- Is every LTS associated with the process specifiable by P executable? (executability)

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π -Calculus

Reactive Turing Powerfulness of the π -Calculus Executability of the π -Calculus Processes

π -calculus

We presuppose a countably infinite set \mathcal{N} of names.

The prefixes, processes and summations of the π -calculus are, respectively, defined by the following grammar:

$$\pi := \overline{x}y \mid x(z) \mid \tau \qquad (x, y, z \in \mathcal{N})$$
$$P := M \mid P \mid P \mid (z)P \mid !P$$
$$M := 0 \mid \pi.P \mid M + M .$$

Link Mobility

Suppose $P = \overline{x}z.P'$, Q = x(y).Q'. Then $(z)(P \mid R) \mid Q \xrightarrow{\tau} P' \mid (z)(R \mid Q'')$, where $Q'' = \{z/y\}Q'$.

Expressiveness of the π **-calculus**

Expressiveness of the π **-calculus**

1. Can we specify every executable LTS in the π -calculus? (reactive Turing powerfulness?)

Expressiveness of the π **-calculus**

- 1. Can we specify every executable LTS in the π -calculus? (reactive Turing powerfulness?)
- 2. Is every LTS associated with the process specifiable in the π -calculus executable? (executability?)

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π -Calculus Reactive Turing Powerfulness of the π -Calculus Executability of the π -Calculus Processes

Specification of an RTM

The specification contains two parts:

- 1. A generic process to specify the tape of a machine, and
- 2. a bunch specific processes for transition rules.

Таре

- 1. Tape head: read, write, move
- 2. Cells: an ordered sequence to record data
- 3. Generator: a facility to generate new cells

Control of the machine

The transition rules of RTMs are of the form:

 $s \stackrel{a[d/e]M}{\longrightarrow} t$

Control of the machine

The transition rules of RTMs are of the form:

 $s \stackrel{a[d/e]M}{\longrightarrow} t$

The state **s** and data **d** determine the set of subsequent transitions.

Control of the machine

The transition rules of RTMs are of the form:

$$s \stackrel{a[d/e]M}{\longrightarrow} t$$

The state **s** and data **d** determine the set of subsequent transitions.

Theorem

For every executable transition system T there exists a π -term P, such that $T \Leftrightarrow_{b}^{\Delta} \mathcal{T}(P)$.

Theorem

For every executable transition system T there exists a π -term P, such that $T \Leftrightarrow_{b}^{\Delta} \mathcal{T}(P)$.

 π -calculus is reactive Turing powerful modulo divergence-preserving branching bisimilarity.

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π -Calculus Reactive Turing Powerfulness of the π -Calculus Executability of the π -Calculus Processes

Infinitely many names vs. finitely many action labels

Infinitely many names vs. finitely many action labels

We cannot simulate every π -process with RTM :(

Infinitely many names vs. finitely many action labels

We cannot simulate every π -process with RTM :(

Two choices:

Extend the formalism of RTMs to an infinite set of actions.

Restrict the π -calculus with finitely many names.

Extend RTMs with infinitely many actions

An infinite alphabet of data symbols or control states is required.

An infinite alphabet of data symbols or control states is required.

Theorem *Every* effective transition system can be simulated up to *divergence-preserving branching bisimilarity by an RTM with infinite sets of action symbols and data symbols.*

An infinite alphabet of data symbols or control states is required.

Theorem *Every* effective transition system can be simulated up to *divergence-preserving branching bisimilarity by an RTM with infinite sets of action symbols and data symbols.*

Not realistic!

25/28

Free names are restricted to a finite set.

Free names are restricted to a finite set.

Bound names are considered as secret channels.

Free names are restricted to a finite set.

Bound names are considered as secret channels.

An alternative semantics

For a finite set of names \mathcal{N}' and a π -term P, we define the labelled transition system of P over \mathcal{N}' as $\mathcal{T}(P) \upharpoonright \mathcal{N}'$, where

- all the transitions with a free name not in \mathcal{N}' are excluded, and
- bound output with a label $\overline{x}(z)$ are renamed to $\nu \overline{x}$.

Free names are restricted to a finite set.

Bound names are considered as secret channels.

An alternative semantics

For a finite set of names \mathcal{N}' and a π -term P, we define the labelled transition system of P over \mathcal{N}' as $\mathcal{T}(P) \upharpoonright \mathcal{N}'$, where

- all the transitions with a free name not in \mathcal{N}' are excluded, and
- bound output with a label $\overline{x}(z)$ are renamed to $\nu \overline{x}$.

 $\mathcal{T}(P) \upharpoonright \mathcal{N}'$ actually collects exactly all the behaviour of P regarding to $\mathcal{N}'.$

Theorem

Every closed π -term with finitely many observable names is executable up to branching bisimilarity, but there exist closed π -terms with finitely many observable names that are **not** executable up to divergence-preserving branching bisimilarity.

Theorem

Every closed π -term with finitely many observable names is executable up to branching bisimilarity, but there exist closed π -terms with finitely many observable names that are not executable up to divergence-preserving branching bisimilarity.

It is executable modulo branching bisimilarity, and but not modulo divergence-preserving branching bisimilarity.

Conclusion

The notion of reactive Turing machine and executability

Conclusion

- The notion of reactive Turing machine and executability
- A framework to evaluate the expressiveness for a model of concurrency

Conclusion

- The notion of reactive Turing machine and executability
- A framework to evaluate the expressiveness for a model of concurrency
- An application to the π -calculus
 - Reactive Turing powerfulness
 - Executability

Thank You!

