Executable Behaviours and the π-Calculus

Bas Luttik Fei Yang

June 5, 2015
From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π-Calculus
Reactive Turing Powerfulness of the π-Calculus
Executability of the π-Calculus Processes
Church Turing Thesis: every computable function can be computed with a Turing Machine.
Church Turing Thesis: every computable function can be computed with a Turing Machine
The CT thesis is sometimes paraphrased as:
“A TM can do everything a real computer can do”
How accurate is CT Thesis

The CT thesis is sometimes paraphrased as:
“A TM can do everything a real computer can do”

Question:
“Is the statement valid for interactive computation?”
How accurate is CT Thesis

The CT thesis is sometimes paraphrased as: “A TM can do everything a real computer can do”

Question: “Is the statement valid for interactive computation?”
How accurate is CT Thesis

The CT thesis is sometimes paraphrased as: “A TM can do everything a real computer can do”

Question:
“Is the statement valid for interactive computation?”

A TM cannot fly an aircraft.
The CT thesis is sometimes paraphrased as:
“A TM can do everything a real computer can do”

Question:
“Is the statement valid for interactive computation?”

A TM cannot fly an aircraft.

But a bunch of reactive computing systems operating concurrently can!
How accurate is CT Thesis

The CT thesis is sometimes paraphrased as: “A TM can do everything a real computer can do”

Question: “Is the statement valid for interactive computation?”

A TM cannot fly an aircraft.
But a bunch of reactive computing systems operating concurrently can!

Concurrency Theory is introduced to study such systems.
Interaction: between parallel components
Computation in Concurrency Theory

- Interaction: between parallel components
- Non-termination: infinitely long execution sequence (divergence)
Computation in Concurrency Theory

- Interaction: between parallel components
- Non-termination: infinitely long execution sequence (divergence)
- Non-determinism: nondeterministic behaviours
Computation in Concurrency Theory

- Interaction: between parallel components
- Non-termination: infinitely long execution sequence (divergence)
- Non-determinism: nondeterministic behaviours

Concurrency Theory + CT Thesis?
Computation in Concurrency Theory

- Interaction: between parallel components
- Non-termination: infinitely long execution sequence (divergence)
- Non-determinism: nondeterministic behaviours

Concurrency Theory + CT Thesis?

Concurrency
Computation in Concurrency Theory

- Interaction: between parallel components
- Non-termination: infinitely long execution sequence (divergence)
- Non-determinism: nondeterministic behaviours

Concurrency Theory + CT Thesis?

Concurrency + Computability
Computation in Concurrency Theory

- Interaction: between parallel components
- Non-termination: infinitely long execution sequence (divergence)
- Non-determinism: nondeterministic behaviours

Concurrency Theory + CT Thesis?

Concurrency + Computability = Executability
Given a process calculus:
Absolute Expressiveness

Given a process calculus:

- In classical theory of computability:
Absolute Expressiveness

Given a process calculus:

- In classical theory of computability:
 - Is it Turing powerful?
Absolute Expressiveness

Given a process calculus:
 ▶ In classical theory of computability:
 • Is it Turing powerful?
 • Is it computable?
Absolute Expressiveness

Given a process calculus:

- In classical theory of computability:
 - Is it Turing powerful?
 - Is it computable?

- In theory of executability:
Absolute Expressiveness

Given a process calculus:

- In classical theory of computability:
 - Is it Turing powerful?
 - Is it computable?

- In theory of executability:
 - Is it reactive Turing powerful?
Absolute Expressiveness

Given a process calculus:

- In classical theory of computability:
 - Is it Turing powerful?
 - Is it computable?

- In theory of executability:
 - Is it reactive Turing powerful?
 - Is it executable?
Outline

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π-Calculus
 Reactive Turing Powerfulness of the π-Calculus
 Executability of the π-Calculus Processes
Outline

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π-Calculus
 Reactive Turing Powerfulness of the π-Calculus
 Executability of the π-Calculus Processes
A reactive Turing machine (RTM) is a classical Turing machine with an action from some set \mathcal{A}_τ associated with every transition.

So RTMs have two types of transitions:

1. $s \xrightarrow{a[d/e]M} t$ means “externally observable, as execution of a”
2. $s \xrightarrow{\tau[d/e]M} t$ means “internal, unobservable transition”

M is ether “moving left” or “moving right”
We associate with every configuration (control state, tape instance) a state, and associate with every execution step a labelled transition.
A transition system is called executable if it is behaviourally equivalent to the transition system of an RTM.
A transition system is called **executable** if it is **behaviorally equivalent** to the transition system of an RTM.

The notion of behavioral equivalence is a **parameter** of executability.
A transition system is called **executable** if it is **behaviourally equivalent** to the transition system of an RTM.

The notion of behavioural equivalence is a **parameter** of executability.

We start from **(divergence-preserving) branching bisimilarity**
Evaluating Expressiveness

1. Can we specify every executable LTS by the LTS associated with \(\mathcal{M} \)? (reactive Turing powerfulness?)

2. Is every LTS associated with the process specifiable by \(\mathcal{M} \) executable? (executability)
1. Can we specify every executable LTS by the LTS associated with P? (reactive Turing powerfulness?)
Evaluating Expressiveness

1. Can we specify every executable LTS by the LTS associated with P? (reactive Turing powerfulness?)

2. Is every LTS associated with the process specifiable by P executable? (executability)
Outline

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π-Calculus
 Reactive Turing Powerfulness of the π-Calculus
 Executability of the π-Calculus Processes
We presuppose a countably infinite set \mathcal{N} of names.

The prefixes, processes and summations of the π-calculus are, respectively, defined by the following grammar:

$$
\pi := \overline{xy} \mid x(z) \mid \tau \quad (x, y, z \in \mathcal{N})
$$

$$
P := M \mid P \mid P \mid (z)P \mid !P
$$

$$
M := 0 \mid \pi.P \mid M + M
$$
Suppose $P = \bar{x}z.P', \ Q = x(y).Q'$.
Then $(z)(P \mid R) \mid Q \xrightarrow{\tau} P' \mid (z)(R \mid Q'')$, where $Q'' = \{z/y\}Q'$.

![Diagram with arrows and variables]

TU/e Technische Universiteit Eindhoven University of Technology
Expressiveness of the π-calculus

1. Can we specify every executable LTS in the π-calculus? (reactive Turing powerfulness?)

2. Is every LTS associated with the process specifiable in the π-calculus executable? (executability?)
Expressiveness of the π-calculus

1. Can we specify every executable LTS in the π-calculus? (reactive Turing powerfulness?)

2. Is every LTS associated with the process specifiable in the π-calculus executable? (executability?)
Expressiveness of the π-calculus

1. Can we specify every executable LTS in the π-calculus? (reactive Turing powerfulness?)

2. Is every LTS associated with the process specifiable in the π-calculus executable? (executability?)
From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π-Calculus
Reactive Turing Powerfulness of the π-Calculus
Executability of the π-Calculus Processes
The specification contains two parts:

1. A generic process to specify the tape of a machine, and
2. a bunch specific processes for transition rules.
1. Tape head: read, write, move
2. Cells: an ordered sequence to record data
3. Generator: a facility to generate new cells
Control of the machine

The transition rules of RTMs are of the form:

\[s \xrightarrow{a[d/e]M} t \]
Control of the machine

The transition rules of RTMs are of the form:

\[s \xrightarrow{a[d/e]M} t \]

The state \(s \) and data \(d \) determine the set of subsequent transitions.
Control of the machine

The transition rules of RTMs are of the form:

\[s \xrightarrow{a[d/e]M} t \]

The state \(s \) and data \(d \) determine the set of subsequent transitions.

\[S_{s,d} \overset{\text{def}}{=} \sum_{(s,d,a,e,m,t) \in \rightarrow M} \overline{a.\text{write } e.\overline{m}.\text{read}(f).S_{t,f}} \]

![Diagram]

- The transition rules of RTMs are of the form:
 \[s \xrightarrow{a[d/e]M} t \]

- The state \(s \) and data \(d \) determine the set of subsequent transitions.

\[S_{s,d} \overset{\text{def}}{=} \sum_{(s,d,a,e,m,t) \in \rightarrow M} \overline{a.\text{write } e.\overline{m}.\text{read}(f).S_{t,f}} \]
Theorem

For every executable transition system T there exists a π-term P, such that $T \xrightarrow{b} T(P)$.

π-calculus is reactive Turing powerful modulo divergence-preserving branching bisimilarity.
Expressiveness of the π-Calculus

Theorem
For every executable transition system T there exists a π-term P, such that $T \leftrightarrow^b T(P)$.

π-calculus is reactive Turing powerful modulo divergence-preserving branching bisimilarity.
Outline

From Computability to Executability

Evaluating Expressiveness w.r.t. Executability

Expressiveness of the π-Calculus
 Reactive Turing Powerfulness of the π-Calculus
 Executability of the π-Calculus Processes
Simulating π-processes with RTMs

Infinitely many names vs. finitely many action labels
Simulating π-processes with RTMs

Infinitely many names vs. finitely many action labels

We cannot simulate every π-process with RTM :(
Simulating π-processes with RTMs

Infinitely many names vs. finitely many action labels

We cannot simulate every π-process with RTM :(

Two choices:

Extend the formalism of RTMs to an infinite set of actions.

Restrict the π-calculus with finitely many names.
An infinite alphabet of data symbols or control states is required.
An infinite alphabet of data symbols or control states is required.

Theorem

Every effective transition system can be simulated up to divergence-preserving branching bisimilarity by an RTM with infinite sets of action symbols and data symbols.
An infinite alphabet of data symbols or control states is required.

Theorem

Every effective transition system can be simulated up to divergence-preserving branching bisimilarity *by an RTM with infinite sets of action symbols and data symbols.*

Not realistic!
Free names are restricted to a finite set.
Restrict the π-calculus with finitely many names

Free names are restricted to a finite set.

Bound names are considered as secret channels.
Restrict the π-calculus with finitely many names

Free names are restricted to a finite set.

Bound names are considered as secret channels.

An alternative semantics
For a finite set of names \mathcal{N}' and a π-term P, we define the labelled transition system of P over \mathcal{N}' as $\mathcal{T}(P) \upharpoonright \mathcal{N}'$, where

- all the transitions with a free name not in \mathcal{N}' are excluded, and
- bound output with a label $\overline{x}(z)$ are renamed to $\nu\overline{x}$.
Restrict the π-calculus with finitely many names

Free names are restricted to a finite set.

Bound names are considered as secret channels.

An alternative semantics
For a finite set of names N' and a π-term P, we define the labelled transition system of P over N' as $\mathcal{T}(P) \upharpoonright N'$, where

- all the transitions with a free name not in N' are excluded, and
- bound output with a label $\overline{x}(z)$ are renamed to $\nu \overline{x}$.

$\mathcal{T}(P) \upharpoonright N'$ actually collects exactly all the behaviour of P regarding to N'.
Theorem
Every closed π-term with finitely many observable names is executable up to branching bisimilarity, but there exist closed π-terms with finitely many observable names that are not executable up to divergence-preserving branching bisimilarity.
Theorem

Every closed π-term with finitely many observable names is executable up to branching bisimilarity, but there exist closed π-terms with finitely many observable names that are not executable up to divergence-preserving branching bisimilarity.

It is executable modulo branching bisimilarity, and but not modulo divergence-preserving branching bisimilarity.
Conclusion

- The notion of reactive Turing machine and executability
Conclusion

- The notion of reactive Turing machine and executability
- A framework to evaluate the expressiveness for a model of concurrency
Conclusion

- The notion of reactive Turing machine and executability
- A framework to evaluate the expressiveness for a model of concurrency
- An application to the π-calculus
 - Reactive Turing powerfulness
 - Executability
Thank You!