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How accurate is CT Thesis

The CT thesis is sometimes paraphrased as:
“A TM can do everything a real computer can do”

Question:
“Is the statement valid for interactive computation?”

A TM cannot fly an aircraft.

But a bunch of reactive computing
systems operating concurrently can!

Concurrency Theory is introduced to study such systems.
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Computation in Concurrency Theory

I Interaction: between parallel components

I Non-termination : infinitely long execution sequence (divergence)

I Non-determinism : nondeterministic behaviours

Concurrency Theory + CT Thesis?

Concurrency +Computability = Executability
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Reactive Turing Machines

A: set of actions; τ : a special action (/∈ A), for unobservable actions.

Aτ = A ∪ {τ }.

A reactive Turing machine (RTM) is a classical Turing machine with an
action from some set Aτ associated with every transition.

So RTMs have two types of transitions:

1. s
a[d/e]M
−→ t means “externally observable, as execution of a”

2. s
τ [d/e]M
−→ t means “internal, unobservable transition”

M is ether “moving left” or “moving right”
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Labelled Transition System of an RTM

We associate with every configuration (control state, tape instance) a
state, and associate with every execution step a labelled transition.
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Executability and Behavioural Equivalence

A transition system is called executable if it is behaviourally equivalent
to the transition system of an RTM.

The notion of behavioural
equivalence is a parameter of
executability.

We start from
(divergence-preserving)
branching bisimilarity
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2. Is every LTS associated with the process specifiable by P
executable? (executability)
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π -calculus

We presuppose a countably infinite set N of names.

The prefixes, processes and summations of the π -calculus are,
respectively, defined by the following grammar:

π := xy | x(z) | τ (x, y, z ∈ N )

P := M | P | P | (z)P | !P

M := 0 | π.P | M +M .
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Link Mobility

Suppose P = xz .P ′, Q = x(y).Q ′.
Then (z)(P | R ) | Q

τ
−→ P ′ | (z)(R | Q ′′), where Q ′′ = {z/y}Q ′.



16/28
Expressiveness of the π -calculus

1. Can we specify every executable LTS in the π -calculus? (reactive
Turing powerfulness? )
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Specification of an RTM

The specification contains two parts:

1. A generic process to specify the tape of a machine, and

2. a bunch specific processes for transition rules.
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Tape

1. Tape head: read, write, move

2. Cells: an ordered sequence to record data

3. Generator: a facility to generate new cells
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Control of the machine

The transition rules of RTMs are of the form:

s
a[d/e]M
−→ t

The state s and data d determine the set of subsequent transitions.

Ss,d
def
=

∑
(s,d ,a,e,m,t)∈−→M

a .write e .m .read(f ).St ,f
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For every executable transition system T there exists a π -term P , such
that T ↔1

b T (P ).

π -calculus is reactive Turing powerful modulo divergence-preserving
branching bisimilarity.
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Simulating π -processes with RTMs

Infinitely many names vs. finitely many action labels

We cannot simulate every π -process with RTM :(

Two choices:

Extend the formalism of RTMs to an infinite set of actions.

Restrict the π -calculus with finitely many names.
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Extend RTMs with infinitely many actions

An infinite alphabet of data symbols or control states is required.

Theorem
Every effective transition system can be simulated up to
divergence-preserving branching bisimilarity by an RTM with infinite sets
of action symbols and data symbols.

Not realistic!
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Restrict the π -calculus with finitely many names

Free names are restricted to a finite set.

Bound names are considered as secret channels.

An alternative semantics
For a finite set of names N ′ and a π -term P , we define the labelled
transition system of P over N ′ as T (P ) � N ′, where

I all the transitions with a free name not in N ′ are excluded, and
I bound output with a label x(z) are renamed to νx.

T (P ) � N ′ actually collects exactly all the behaviour of P regarding to
N ′.
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Every closed π -term with finitely many observable names is executable
up to branching bisimilarity, but there exist closed π -terms with finitely
many observable names that are not executable up to
divergence-preserving branching bisimilarity.

It is executable modulo branching bisimilarity, and but not modulo
divergence-preserving branching bisimilarity.
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Thank You!
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