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Signal Flow Graphs
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An example:

Input 1000... produces 1234....
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o Formal analysis typically mean translation into a “lower-level”
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String diagrammatic (=graphical) syntax
Structural Operational Semantics
Denotational semantics
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Full Abstraction

Realisability
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Circuit diagrams of Circ are generated by the grammar
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We can represent (orthodox) signal flow graphs as circuit diagrams:




Structural Operational Semantics
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The operational semantics (c) is the set of all traces starting from an
initial state for c (i.e. one where all the registers are labeled with 0).
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Denotational Semantics

The semantics [[-]] maps a circuit to a linear relation between stream vectors
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Axiomatisation of [[-]

The equational theory of interacting Hopf algebras (IH):

— {@, E} and {g [¢]} form two commutative monoids.
—{(J, £} and { £, F=]} form two commutative comonoids.

— monoid-comonoid pairs of different colors form Hopf algebras.

— monoid-comonoid pairs of the same color form Frobenius algebras.
— scalars and delays have formal inverses.

Do-0-@D  bo-O-fos

Soundness and Completeness
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Full Abstraction

Theorem (?)

For any ¢ and d in Circ

Not true in general.
The denotational semantics is coarser than the operational semantics.
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A counterexample
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We say that has deadlocks and needs initialisation.



Full Abstraction

Theorem
For any ¢ and d in Circ deadlock and initialisation free

[c] = [d] <= (c)=(d)



Realisability

In presence of deadlocks or initialisation, we cannot determine
directionality of the flow.
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Realisability

In presence of deadlocks or initialisation, we cannot determine
directionality of the flow.
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A trace for these circuits cannot be thought as the execution of a
state-machine.
However, all the circuit diagrams can be put into an executable form

) . TH
using the equational theory =.

Realisability Theorem
For any circuit ¢ of Circ there exists

d deadlock and initialisation free such that ¢ = d.
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Conclusions

o The calculus of signal flow diagrams does not rely on flow
directionality as a primitive.
The reason why physics has ceased to look for causes
is that in fact there are no such things. The law of
causality, I believe, like much that passes muster
among philosophers, is a relic of a bygone age,
surviving, like the monarchy, only because it is

erroneously supposed to do no harm.
(Bertrand Russell -1913)

o This allows for a more flexible syntax, disclosing a rich and
elegant mathematical playground: ITH.

o Whenever flow directionality matters, the realisability theorem
allows us rewrite any circuit diagram into an executable form.



