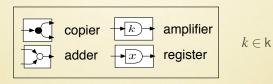
Full Abstraction for Signal Flow Graphs

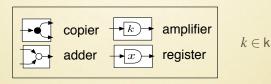
Filippo Bonchi, Paweł Sobociński, Fabio Zanasi

ICE 2015

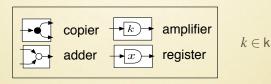
- Signal Flow Graphs are **stream processing circuits** studied in Control Theory since the 1950s.
- Constructed combining four kinds of gate



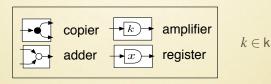
- Signal Flow Graphs are **stream processing circuits** studied in Control Theory since the 1950s.
- Constructed combining four kinds of gate



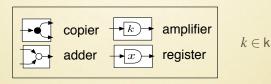
- Signal Flow Graphs are **stream processing circuits** studied in Control Theory since the 1950s.
- Constructed combining four kinds of gate



- Signal Flow Graphs are **stream processing circuits** studied in Control Theory since the 1950s.
- Constructed combining four kinds of gate

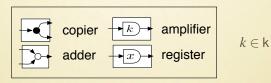


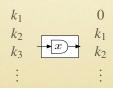
- Signal Flow Graphs are **stream processing circuits** studied in Control Theory since the 1950s.
- Constructed combining four kinds of gate

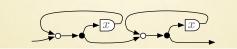


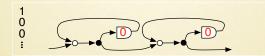
$$\rightarrow k \rightarrow l$$

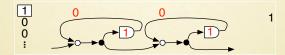
- Signal Flow Graphs are **stream processing circuits** studied in Control Theory since the 1950s.
- Constructed combining four kinds of gate

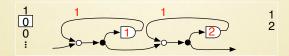


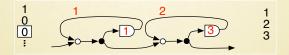




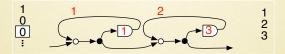








An example:



Input 1000... produces 1234....

The orthodoxy

- SFGs are not treated as interesting mathematical objects per se.
- Formal analysis typically mean translation into a "lower-level" formalism like systems of linear equations.

The orthodoxy

- SFGs are not treated as interesting mathematical objects per se.
- Formal analysis typically mean translation into a "lower-level" formalism like systems of linear equations.

In this work

• An high-level formalism where SFGs are first-class objects: the calculus of signal flow diagrams

The orthodoxy

- SFGs are not treated as interesting mathematical objects per se.
- Formal analysis typically mean translation into a "lower-level" formalism like systems of linear equations.

In this work

- An high-level formalism where SFGs are first-class objects: the calculus of signal flow diagrams
 - String diagrammatic (=graphical) syntax
 - Structural Operational Semantics
 - Denotational semantics
 - Sound and complete axiomatisation
 - Full Abstraction
 - Realisability

The Calculus of SF Diagrams

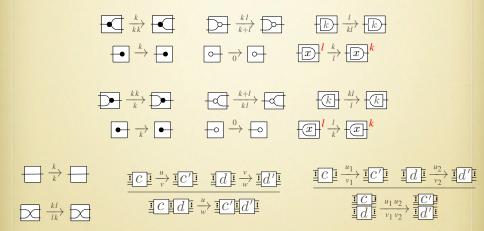
Circuit diagrams of Circ are generated by the grammar

The Calculus of SF Diagrams

Circuit diagrams of Circ are generated by the grammar

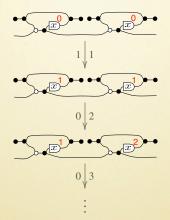
We can represent (orthodox) signal flow graphs as circuit diagrams:

Structural Operational Semantics



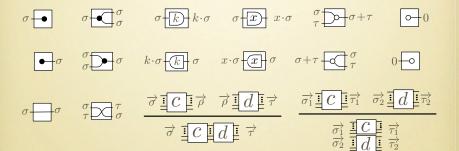
The operational semantics $\langle c \rangle$ is the set of all traces starting from an initial state for *c* (i.e. one where all the registers are labeled with **0**).

Example



Denotational Semantics

The semantics [[·]] maps a circuit to a linear relation between stream vectors



Axiomatisation of [[·]]

The equational theory of *interacting Hopf algebras* (\mathbb{IH}) :

 $-\{ \mathbf{p}, \mathbf{q} \}$ and $\{ \mathbf{p}, \mathbf{q} \}$ form two commutative monoids.

- monoid-comonoid pairs of different colors form Hopf algebras.

- monoid-comonoid pairs of the same color form Frobenius algebras.

- scalars and delays have formal inverses.

Soundness and Completeness

$$\llbracket c \rrbracket = \llbracket d \rrbracket \iff c \stackrel{{\tt IH}}{=} d$$

Theorem (?) For any *c* and *d* in Circ

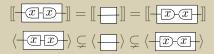
$$[\![c]\!] = [\![d]\!] \iff \langle c \rangle = \langle d \rangle$$

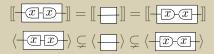
Theorem (?) For any *c* and *d* in Circ

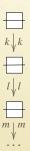
$$[\![c]\!] = [\![d]\!] \iff \langle c \rangle = \langle d \rangle$$

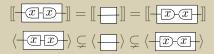
Not true in general.

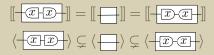
The denotational semantics is *coarser* than the operational semantics.

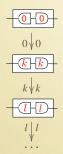






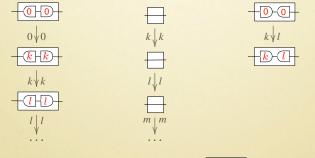






A counterexample





We say that -x has *deadlocks* and -x needs *initialisation*.

Theorem For any *c* and *d* in Circ deadlock and initialisation free $[[c]] = [[d]] \iff \langle c \rangle = \langle d \rangle$

Realisability

In presence of deadlocks or initialisation, we cannot determine directionality of the flow.

A trace for these circuits cannot be thought as the execution of a state-machine.

Realisability

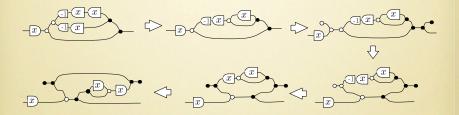
In presence of deadlocks or initialisation, we cannot determine directionality of the flow.

A trace for these circuits cannot be thought as the execution of a state-machine.

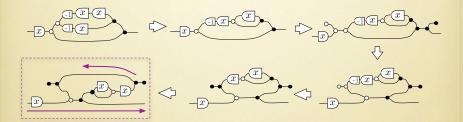
However, all the circuit diagrams can be put into an executable form using the equational theory $\stackrel{\text{IIII}}{=}$.

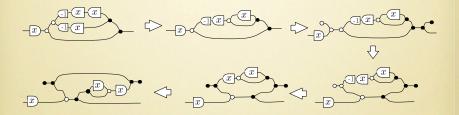
Realisability Theorem

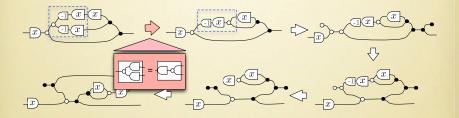
For any circuit *c* of Circ there exists *d* deadlock and initialisation free such that $c \stackrel{\text{IIII}}{=} d$.

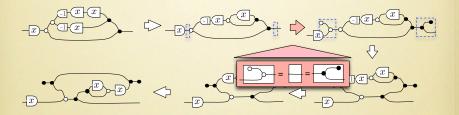


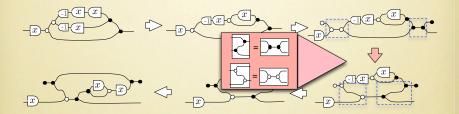


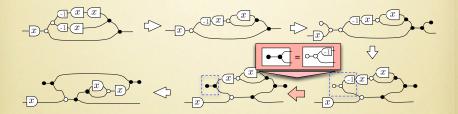


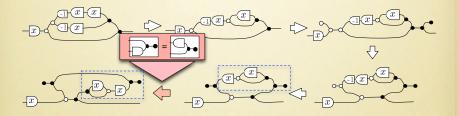


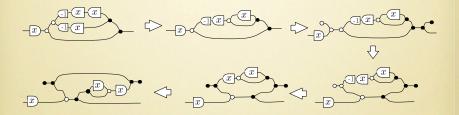












Conclusions

 The calculus of signal flow diagrams does not rely on flow directionality as a primitive.

> The reason why physics has ceased to look for causes is that in fact there are no such things. The law of causality, I believe, like much that passes muster among philosophers, is a relic of a bygone age, surviving, like the monarchy, only because it is erroneously supposed to do no harm. (Bertrand Russell -1913)

- This allows for a more flexible syntax, disclosing a rich and elegant mathematical playground: IIH.
- Whenever flow directionality matters, the realisability theorem allows us rewrite any circuit diagram into an executable form.