
Rigorous System Design

Joseph Sifakis
The BIP team Grenoble
EPFL Lausanne

ICE 2015
June 4, Grenoble

Poorly Engineered Systems
 The most important trend in ICT is the increasing integration of devices and

services, e.g. IoT

 Unfortunately, with the exception of a few well-regulated areas, e.g.
avionics, the majority of systems are poorly engineered

 No need to be a wizard to realize that the IoT vision cannot come true,
under current conditions. The main roadblocks to its achievement is the
impossibility to meet crucial requirements for the development of
autonomous services
 poor dependability of infrastructures and systems
 impossibility to guarantee response times in communication.

 Cybercrime cannot be mastered if we do not radically change the way we
design and develop systems.

 There is no miracle. If we do not even understand how a system is built, it
will never be possible to guarantee its trustworthiness.

 The current situation is the result of the conjunction of many factors.

Poorly Engineered Systems – Theory vs. Practice

Theoretical research

 has a predilection for
mathematically clean
theoretical frameworks, no
matter how relevant they
can be.

 results are “low-level” and
have no point of contact
with real computing - they
are mainly based on
transition systems which are
structure-agnostic and
cannot account for real-
languages, design
principles, architectures etc.

Practically-oriented research

 frameworks for
programming or modeling
real systems are
constructed in an ad hoc
manner - by putting
together a large number of
constructs and primitives.

 these frameworks are not
amenable to formalization.
It is also problematic to
assimilate and master their
concepts by reading
manuals of hundreds of
pages.

Joseph Sifakis (2013), "Rigorous System Design",
Foundations and Trends® in Electronic Design Automation: Vol. 6: No. 4, pp 293-362.

Poorly Engineered Systems – Design vs. Experiments

The need for rigorous disciplined design is sometimes directly or indirectly
questioned by developers of large-scale systems (e.g., web-based systems)
who privilege experimental/analytic approaches:

 The cyber-world can be studied in the same manner as the physical world,
e.g. Web Science, “Cyber-Physics?”

 The aim is to find laws that govern/explain observed phenomena rather than
to investigate design principles for achieving a desired behavior.

“On line companies don’t anguish over how to design their Web sites.
Instead they conduct controlled experiments by showing different versions
to different groups of users until they have iterated to an optimal solution” .

It is clear that
 experimental approaches can be useful only for optimization purposes
 trustworthiness is a qualitative property and by its nature, it cannot be

achieved by fine tuning of parameters. Small changes can have a dramatic
impact on system safety and security.

Poorly Engineered Systems – Design vs. Experiments

“The Roman bridges of antiquity were very inefficient
structures. By modern standards, they used too much stone,
and as a result, far too much labour to build. Over the years

we have learned to build bridges more efficiently, using fewer
materials and less labour to perform the same task.” !

WHAT HAPPENED TO software engineering?
What happened to the promise of rigorous, disciplined, professional practices
for software development, like those observed in other engineering
disciplines?
What has been adopted under the rubric of “software engineering” is a set of
practices largely adapted from other engineering disciplines: project
management, design and blueprinting, process control, and so forth. The basic
analogy was to treat software as a manufactured product, with all the real
“engineering” going on upstream of that—in requirements analysis, design and
modeling,among others.

Today’s software craftsmanship movement is a direct reaction to the
engineering approach. Focusing on the craft of software development, this
movement questions whether it even makes sense to engineer software.

DECEMBER 2014 | VOL. 57 | NO. 12 | COMMUNICATIONS OF THE ACM

One might suggest computer science provides the underlying theory for
software engineering—and this was, perhaps, the original expectation when
software engineering was first conceived.
In reality, however, computer science has remained a largely academic
discipline, focused on the science of computing in general but mostly
separated from the creation of software-engineering methods in industry.
While “formal methods” from computer science provide the promise of doing
some useful theoretical analysis of software, practitioners have largely
shunned such methods (except in a few specialized areas such as methods
for precise numerical computation).

What Kind of Theory?

 Refute the idea that “system design is a definitely a-scientific activity driven by
predominant subjective factors that preclude rational treatment”, promoted by
 influential “guilds” of gurus, craftsmen, experts, within big SW companies and

consulting companies
 a booming market in cybersecurity, a consequence of poor engineering

 Giving up the ambition of building provably trustworthy and optimal systems
inevitably leads to a dead end -- it is a roadblock to further system integration.

 What kind of theoretical foundations we need?.

 Be very wary of the traditional engineering metaphor for building software and
systems
Physical systems engineering is rooted in a kind of theory that is impossible for
cyber systems which are not governed by simple uniform physical laws as
physical systems are – there is no equivalent to analytic models

© 2014 Project Smart. All rights reserved.

“The Roman bridges of antiquity were very inefficient
structures. By modern standards, they used too much stone,
and as a result, far too much labour to build. Over the years

we have learned to build bridges more efficiently, using fewer
materials and less labour to perform the same task.” !

What Kind of Theory? – Computing vs. Physical Systems

“Overall, the success rate was only 16.2%,
while challenged projects accounted for
52.7%, and impaired (cancelled) for 31.1%.”!

COMMUNICATIONS OF THE ACM | FEBRUARY 2015 | VOL. 58 | NO. 2

Both computing and physics deal with systems X’= f(X,Y) where

Computing
X’ is the next state
X is the current state
Y is the current input
Discrete variables

Significant differences:
 Physical systems are inherently synchronous and driven by uniform laws.
 Computation models ignore physical time and are driven by specific laws

defined by their designers

Computing systems can be studied as scientific theories!

What Kind of Theory? – Computing vs. Physical Systems

What Kind of Theory?

 Correctness

 Verification is a stopgap – although it should be applied whenever
possible and cost-effective

 The ambition is not to build completely flawless systems - which is
simply not realistic – but instead to follow a rigorous design process by
respecting principles of transparency and accountability

 Focus on design as a well-defined process leading from requirements to
systems

 Learn from successful design paradigms – HW, critical systems
 Theory and techniques for reusing not only components but also

principles based on a minimal number of well-defined and expressive
concepts and constructs

 Correctness by construction along the design flow based on principles
of compositionality and composability

O
V
E
R
V
I
E
W

10

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

System Design – About Design

RECIPE
(Program)

 Put apples in pie plate;
 Sprinkle with cinnamon
and 1 tablespoon sugar;

 In a bowl mix 1 cup sugar,
flour and butter;

 Blend in unbeaten egg,
pinch of salt and the nuts;

 Mix well and pour over apples;
Bake at 350 degrees

for 45 minutes

INGREDIENTS
(Resources)

1 pie plate buttered
5or 6 apples, cut up
¾ c. butter, melted

1 c. flour
½ c. chopped nuts
1tsp cinnamon
1tbsp sugar
1c. Sugar
1 egg

Apple
Pie

Design is a Universal Concept!
.

P
ro

ce
du

ra
liz

at
io

n

M
at

er
ia

liz
at

io
n

System Design – Two Main Gaps

R
eq

ui
re

m
en

ts
(d

ec
la

ra
tiv

e)

A
pp

lic
at

io
n

S
W

(e
xe

cu
ta

bl
e)

S
ys

te
m

(H
W

+S
W

)

Correctness? Correctness?

P
ro

ce
du

ra
liz

at
io

n

M
at

er
ia

liz
at

io
n

System Design – Requirements

13

Trustworthiness requirements express assurance that the designed
system can be trusted that it will perform as expected despite

HW failures Design Errors Environment
Disturbances

Malevolent
Actions

Optimization requirements are quantitative constraints on resources such
as time, memory and energy characterizing

1) performance e.g. throughput, jitter and latency;
2) resources e.g. storage efficiency, processor utilizability

The two types of requirements are antagonistic: System design should
determine tradeoffs between cost and quality

System Design – Critical vs. Non-critical

1
4

Safety critical: a failure
may be a catastrophic
threat to human lives

Security critical:
harmful
unauthorized
access

Mission critical: system availability is
essential for the proper running of an
organization or of a larger system

Best-effort: optimized use of resources for
an acceptable level of trustworthiness

 For critical systems development costs increase exponentially with their size!
 Developing of mixt criticality systems is a challenge!

System Design – Reported Failures

System Design – Verification

Verification
Method

Requirements

YES, NO, DON’T KNOW

Should be:
 faithful e.g. whatever

property is satisfied
for the model holds
for the real system

 generated
automatically from
system descriptions

Should be:
 consistent

e.g. there exists
some model
satisfying them

 complete
e.g. they tightly
characterize the
system’s behavior

Verification techniques are monolithic and highly costly to apply: ~
$1,000 per line of code for “high-assurance” software!

Model

System Design – Verification: Building models

v= …
u= ..
x= …
y= …
z=xy

MODEL

z

x

y
u

v

HW

For hardware, it is easy to get faithful logical finite state models
represented as systems of boolean equations

semantics

System Design – Verification: Building models

if….
while valid do
if x<0 then z=x

else z=-x;

while …

P
R

O
G

R
A

M

semantics

For software this may be much harder ….

va
lidx<0

z:=x
x>=0
z:=-x

valid

S
E

M
A

N
TI

C

M
O

D
E

L

va
lidb

z:=b
 b
z:=  b

 valid

A
B

S
TR

A
C

T
M

O
D

E
L

System Design – Verification: Building models

Tasks
Command
Handlers

Event
Handlers

APPLICATION
SW

For mixed Software/Hardware systems:
 there are no faithful modeling techniques as we have a poor

understanding of how software and the underlying platform interact
 validation by testing physical prototypes or by simulation of ad hoc

models

Antenna

Task
Scheduler

Sensors

Event
Scheduler

Timers

EXECUTION
PLATFORM

?

O
V
E
R
V
I
E
W

20

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Rigorous System Design – The Concept

RSD considers design as a formal accountable and iterative process for deriving
trustworthy and optimized implementations from an application software and models
of its execution platform and its external environment

 Model-based: successive system descriptions are obtained by correct-by-
construction source-to-source transformations of a single expressive model rooted in
well-defined semantics - The Model is the Software!

 Accountable: possibility to assert which among the requirements are satisfied and
which may not be satisfied and why

RSD focuses on mastering and understanding design as a problem solving process
based on divide-and-conquer strategies involving iteration on a set of steps and
clearly identifying

 points where human intervention and ingenuity are needed to resolve design
choices through requirements analysis and confrontation with experimental
results

 segments that can be supported by tools to automate tedious and error-prone
tasks

Rigorous System Design – Four Guiding Principles

Separation of concerns: Keep separate what functionality is provided
(application SW) from how its is implemented by using resources of the target
platform

Coherency: Based on a single model to avoid gaps between steps due to the
use of semantically unrelated formalisms e.g. for programming, HW
description, validation and simulation, breaking continuity of the design flow
and jeopardizing its coherency

Components: Use components for productivity and enhanced correctness

Correctness-by-construction: Overcome limitations of a posteriori verification
through extensive use of provably correct reference architectures and
structuring principles enforcing essential properties

Rigorous System Design – Simplified Flow

Integration of
Architectural Constraints

Code Generation
Integration of

Communication Glue

RequirementsRequirements

D-Finder

Cost/Performance
Analysis

Embedding

Application SW
Model in BIP

Deployable Code Distributed System Model
in S/R-BIP

System Model in BIP

MappingExecution Platform
Model

Application SW

O
V
E
R
V
I
E
W

24

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Component-based Design

Execution Platform

 Complex systems are built
form a relatively small
number of types of
components (bricks, atomic
elements) and glue (mortar)
that can be considered as a
composition operator.

 Components are
indispensable for enhanced
productivity and correctness

 Component composition
lies at the heart of the
parallel computing
challenge

 There is no Common
Component Model
- Heterogeneity

Component-based Design – Synchronous vs. Asynchronous

Open problem: Theory for consistently composing synchronous and
asynchronous components e.g. GALS

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

step step step step

Asynchronous components (General purpose application SW)
 No predefined execution step

Component-based Design – Synchronous vs. Asynchronous

27
Matlab/Simulink

Component-based Design – Synchronous vs. Asynchronous

UML Model
(Rational Rose)

Component-based Design – Synchronous vs. Asynchronous

Mathematically simple does not imply computationally simple!
There is no finite state computational model equivalent to a unit delay!

Unit Delay
x(t) y(t)=x(t-1)

x(t)
x x

y(t)
y y

1 s

x 

x 


y

y=0 y=0

y=1y=1


y

Equivalent timed automaton,
provided that the distance
between two consecutive input
changes is more than 1s.

Thread-based programming

Component-based Design – Programming Styles

Software Engineering

Actor-based programming

Systems Engineering

Component-based Design – Interaction Mechanisms

Broadcast: asymmetric synchronization
triggered by a Sender

Existing formalisms and theories are not expressive enough

 use variety of low-level coordination mechanisms including
semaphores, monitors, message passing, function call

 encompass point-to-point interaction rather than multiparty
interaction

Rendezvous: atomic symmetric

synchronization

Component-based Design – Composition

 Most component composition frameworks fail to meet these requirements
 Process algebras e.g. CCS, CSP, pi-calculus do not distinguish

between behavior and coordination
 Most Architecture Description Languages (ADL) are ad hoc and lack

rigorous semantics.

 Is it possible to express component coordination in terms of composition
operators?
We need a unified composition paradigm for describing and analyzing the
coordination between components in terms of tangible, well-founded and
organized concepts and characterized by
 Orthogonality: clear separation between behavior and coordination

constraints
 Minimality: uses a minimal set of primitives
 Expressiveness: achievement of a given coordination with a minimum

of mechanism and a maximum of clarity

Component-based Design – The Concept of Glue

Build a component C satisfying a given property P, from
 C0 a set of atomic components described by their behavior
 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2

gl12
sat Pgl2

Glue operators are stateless – separation of concerns between
behavior and coordination

Component-based Design – Glue Operators

B1

gl
B2 Bn

We use operational semantics to define the meaning of a
composite component – glue operators are “behavior
transformers”

Operational
Semantics

B

Glue Operators
 build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators
 can be specified by using a family of operational semantics rules
(the Universal Glue)

Component-based Design – Glue Operators: Properties





Glue is a first class entity independent from behavior that can be
decomposed and composed

gl1

1. Incrementality

gl gl2

gl2
gl1

2. Flattening

gl

Component-based Design – Glue Operators: Expressiveness

c1 c2 c3 c4 c1 c3 c2 c4

gl1

gl1
gl1

Given two glues G1 , G2

G2 is strongly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0



 Different from the usual notion of expressiveness!

 Based on strict separation between glue and behavior

Component-based Design – Glue Operators: Expressiveness

c3c1 c2 c1 c3 c c2

gl1

gl1
gl1

Given two glues G1 , G2

G2 is weakly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0 C
where C is a finite set of coordinating components.



Component-based Design – Glue Operators: Expressiveness

BIP BI CCS

SCCS

CSP

<S

<S

<S

<S W >W >

W >

W >

[Bliudze&Sifakis, Concur 08]

S
Universal

Glue

Component-based Design – Modeling in BIP

B E H A V I O R
Interactions (protocols)

Priorities (schedulers)

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12
PR12

PR1
IN1

PR2
IN2 IN1  IN2  IN12

PR1  PR2  PR12
S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

Expressiveness

O
V
E
R
V
I
E
W

40

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Correct by Construction

Execution Platform

System Model

sat Functional

sa
t E

xt
ra

-F
un

ct
io

na
l

 : refinement relation
preserving
functional properties

Requirements

Application SW

42

Correct by Construction – Architectures

Architectures
 depict design principles, paradigms that can be understood

by all, allow thinking on a higher plane and avoiding
low-level mistakes

 are a means for ensuring global properties characterizing the
coordination between components – correctness for free

 Using architectures is key to ensuring trustworthiness and
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of standard reference
architectures -- nobody ever again have to design from scratch a banking
system, an avionics system, a satellite ground system, a web-based e-
commerce system, or a host of other varieties of systems.
 Time-triggered architectures
 Security architectures
 Fault-tolerant architectures
 Adaptive Architectures
 SOAP-based architecture, RESTful architecture

43

Correct by Construction – Architecture Definition

An architecture is a family of operators A(n)[X] parameterized by their arity n
and a family of characteristic properties P(n)

 A(n)[B1,..,Bn] = gl(n)(B1,..,Bn, C(n)), where C(n) is a set of coordinators

 A(n)[B1,..,Bn] meets the characteristic property P(n).

Client-Server
Architecture

C C S S

Glue

C C S S

Transaction Processing
Component=

Characteristic property: atomicity of transactions, fault-tolerance ….

Note that the characteristic property need not be formalized!

44

Correct by Construction – Architectures

Components

Architecture
for Mutual Exclusion

Rule1: Property Enforcement

Architecture
for Mutual Exclusion

satisfies Mutex

Correct by Construction – Architectures: Composability

Mutual Exclusion

Rule2: Property Composability

Scheduling Policy

Mutual Exclusion


Scheduling Policy

Feature interaction in telecommunication systems, interference among web
services and interference in aspect programming are all manifestations of lack
of composability

Sifakis et al “A General Framework for Architecture Composability” SEFM 2014

Components – Correctness-by-Construction
Fully customizable smartphones : The design for Project Ara consists
of what we call an endoskeleton (endo) and modules. The endo is the
structural frame that holds all the modules in place. A module can be
anything, from a new application processor to a new display or keyboard,
an extra battery, a pulse oximeter or something not yet thought of!

Correct by Construction – Refinement


Rendezvous

Protocol
(Asynch Message Passing)

The Refinement Relation 

S1 S2

S1  S2 (S2 refines S1) if
 all traces of S2 are traces of S1(modulo some observation criterion)
 if S1 is deadlock-free then S2 is deadlock-free too
  is preserved by substitution

C1 C2 C4 C’1C3 C’2 C’3 C’4

gl
Protocol

C’1 C’2

Rendezvous

C1 C2

gl
Rendezvous

C1 C2

Correct by Construction – Refinement





Preservation of  by substitution

Protocol

C’1 C’2

Correct by Construction – Refinement Preservation

a

C1 C2

str(a)

cmp(a)

rcv(a)

ack(a)

C’1 C’2D

ab

C1 C2C3

str(a)

cmp(a)

rcv(a)

ack(a)cmp(b)

rcv(b)

ack(b)

C’1 C’2C’3D13 D23

str(b)





Correct by Construction – The BIP Toolset

Distributed Computing Infrastructure

C nesC DOL Lustre Simulink
BIP

Parser
Language

Factory

Embedding Tools

Verification
D-Finder

BIP Compiler

BIP model

S/R BIP
model

C++ generator
(engine-based)

Distributed BIP
generator

C/C++ C/C++

Code generation
and runtimes

BIP Runtime Engine

BIP
executable

C/C++ C/C++

BIP
executable

S2S
Transformers

Platform
model

BIP
executable

BIP
executable

BIP metamodel

Model Repository

Correct by Construction – HW-driven refinement

DOLApplication SWApplication SW MappingMapping ArchitectureArchitecture

Application Application
SW Model

HW

Model

HW
Architecture

Model

System
Model

Translation

Transformation

HW
Component
Library

HW
Component
Library

HdS
Component
Library

HdS
Component
Library

Translationdol2bip template gen

bipWeaverNative BIPNative BIP
Simulation

In
pu

t
S

ys
te

m
 M

od
el

 G
en

er
at

io
n

Instrumented
System Model

Instrumentation: API,
Observer injection

Native BIPNative BIP
Simulation

Performance
Results

Performance
Results

C
od

e
G

en
er

at
io

n

Code
Generation

Multi‐
threaded
application

code

Multi‐
threaded
application

code

HdS
Code
HdS
Code

P
er

fo
rm

an
ce

 E
va

lu
at

io
n

Correct by Construction – Distributed Implementation

Distributed Mutual Exclusion Protocol

Distributed
Implementation

Interaction
Protocol for

l1

Interaction
Protocol for

l2

Interaction
Protocol for

l3

Distributed
Execution
Engine

Interface Interface Interface Interface Interface

I1

I2

I3

Correct by Construction – Distributed Implementation

S2SS2S

S2SS2S

S2SS2S

C1C1 C6C6C3C3 C5C5C2C2 C4C4

C’1

offer port

C’2 C’3 C’4 C’5 C’6

Interaction ProtocolInteraction Protocol

offerport

Interaction ProtocolInteraction Protocol

offerport

reserveok

CR
Protocol

fail

Conflict Resolution Protocol

reserveok fail

S2SS2S

S2SS2S

S2SS2S

1

offer port offer port offer port offer port offer port



reserveok fail reserveok fail

  



   

Correct by Construction – Distributed Implementation

Interaction Protocol


Interaction Protocol


Interaction Protocol


Interaction Protocol


reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4

Token Ring
CRP

Token Ring
CRPRTST

Token Ring
CRPRTST

RT ST

p1

C’1 C’3C’2 C’4

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C’5

o51 p7 p8o52

C’6

o6 p5 p6

C1 C6C3 C5C2 C4

  



Correct by Construction – Distributed Implementation

reserve2 ok2 fail2 reserve3 ok3 fail3 reserve4 ok4 fail4

Dining
Philosophers

CRP Dining
Philosophers

CRP

Dining
Philosophers

CRP

SF1
RF1
SR1
RR1
SF2
RF2
SR2
RR2

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

C1 C6C3 C5C2 C4

  



Interaction Protocol


Interaction Protocol


Interaction Protocol


Interaction Protocol


Correct by Construction – Distributed Implementation

Conflict
Resolution
Protocol

Partitioning of
Interactions

S2SS2S

S2SS2S

S2SS2S

Partitioning of
Components S2SS2S

S2
S
S2
S

S2
S
S2
S

Core1Core1 Core2Core2

Core3Core3 Core4Core4

CHIPCHIP

Core1Core1 Core2Core2

Core3Core3 Core4Core4

CHIPCHIP

Sockets/C++
Code

MPI/C++
Code

Code
Generator

S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

C1 C6C3 C5C2 C4

  



Mapping of
Components

C’1 C’3C’2 C’4 C’5 C’6

Dining
Philo. CRP

Interaction
Prot. 1 2
Interaction
Prot. 1 2

Interaction
Prot. 3 4
Interaction
Prot. 3 4

Dining
Philo. CRP

Dining
Philo. CRP

C’1 C’2 C’4 C’5 C’6C’3

Dining Philo. CRP

Inter.
Prot.


Inter. Prot. 

O
V
E
R
V
I
E
W

57

 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion

Discussion – The Way Forward

Constructivity: There is a huge body of not yet well-formalized solutions to
problems in the form of algorithms, protocols, hardware and software
architectures. The challenge is to
 formalize these solutions as architectures and prove their correctness
 provide a taxonomy of the architectures and their characteristic properties
 decompose any coordination property as the conjunction of predefined

characteristic properties enforced by predefined architectures?

Design formalization raises a multitude of deep theoretical problems related
to the conceptualization of needs in a given area and their effective
transformation into correct artifacts. Two key issues are

Languages: Move from thread-based programming to actor-based
programming for component-based systems
 as close as possible to the declarative style so as to simplify reasoning and

relegate software generation to tools
 supporting synchronous and asynchronous execution as well as the main

programming paradigms
 allowing description of architectures and high-level coordination

mechanisms

Discussion – Is it attainable?

We should learn from two successful rigorous design paradigms:
 VLSI design and associated EDA tools have enabled the IC industry to

sustain almost four orders of magnitude in product complexity growth
since the 80386, while maintaining a consistent product development
timeline.

 Safety-critical systems ensure trustworthy control of aircraft, cars,
plants, medical devices

Main reasons of success
 Coherent and accountable design flows, supported by tools and often

enforced by standards
 Correct-by-construction design enabled by extensive use of

architectures and formal design rules

These are only instructive templates
 ICs consist of a limited number of fairly homogeneous components
 critical systems development techniques are not cost-effective for

general purpose systems

Discussion – Why Is It So Hard?

The Physics Hierarchy

The Universe

Galaxy

Solar System

Electro-mechanical System

Crystals-Fluids-Gases

Molecules

Atoms

Particles

The Computing Hierarchy

The Cyber-world

Networked System

Reactive System

Virtual Machine

Instruction Set Architecture

Register Transfer Level

Logical Gate

Transistor

The Bio-Hierarchy

Organism

Organ

Tissue

Cell

Protein and RNA networks

Protein and RNA

Genes

We need theory, methods and tools for climbing
up-and-down abstraction hierarchies

Ecosystem

Ideas+ Data Information

Phenomena

Artifacts

Cyber-world
Artwork

Human-Built World

Living WorldPhysical World

Discussion – The Rationale for Design

Sc
ie
nc
e

De
sig

n

Knowledge

Biology Computing
Social
Sciences

Formalized Knowledge
Mathematics

Physics

Build in order
to Study

Study in order
to Build

Discussion – For a System Design Discipline

Is everything for the best in the best of all possible cyber-worlds ?
- The toughest uphill battles are still in front of us

Achieving this goal for systems
engineering is both an intellectually
challenging and culturally enlightening
endeavor – it nicely complements the
quest for scientific discovery in natural
sciences

Failure in this endeavor would
 seriously limit our capability to

master the techno-structure

 also mean that designing is a
definitely a-scientific activity driven
by predominant subjective factors
that preclude rational treatment

Discussion

Thank You

