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Poorly Engineered Systems
 The most important trend in ICT is the increasing integration of devices and 

services, e.g. IoT

 Unfortunately, with the exception of a few well-regulated areas, e.g. 
avionics, the majority of systems are poorly engineered

 No need to be a wizard to realize that the IoT vision cannot come true, 
under current conditions. The main roadblocks to its achievement is the 
impossibility to meet crucial requirements for the development of 
autonomous services 
 poor dependability of infrastructures and systems
 impossibility to guarantee response times in communication. 

 Cybercrime cannot be mastered if we do not radically change the way we 
design and develop systems. 

 There is no miracle. If we do not even understand how a system is built, it 
will never be possible to guarantee its trustworthiness. 

 The current situation is the result of the conjunction of many factors. 



Poorly Engineered Systems – Theory vs. Practice

Theoretical research 

 has a predilection for 
mathematically clean 
theoretical frameworks, no 
matter how relevant they 
can be.

 results are “low-level” and 
have no point of contact 
with real computing - they 
are mainly based on 
transition systems which are 
structure-agnostic and 
cannot account for real-
languages, design 
principles, architectures etc. 

Practically-oriented research

 frameworks for 
programming or modeling 
real systems are 
constructed in an ad hoc 
manner - by putting 
together a large number of 
constructs and primitives.

 these frameworks are not 
amenable to formalization. 
It is also problematic to 
assimilate and master their 
concepts by reading 
manuals of hundreds of 
pages. 

Joseph Sifakis (2013), "Rigorous System Design", 
Foundations and Trends® in Electronic Design Automation: Vol. 6: No. 4, pp 293-362. 



Poorly Engineered Systems – Design vs. Experiments

The need for rigorous disciplined design is sometimes directly or indirectly 
questioned by developers of large-scale systems (e.g., web-based systems) 
who privilege experimental/analytic approaches:

 The cyber-world can be studied in the same manner as the physical world, 
e.g. Web Science, “Cyber-Physics?”

 The aim is to find laws that govern/explain observed phenomena rather than 
to investigate design principles for achieving a desired behavior. 

“On line companies . . . . don’t anguish over how to design their Web sites. 
Instead they conduct controlled experiments by showing different versions
to different groups of users until they have iterated to an optimal solution” .

It is clear that 
 experimental approaches can be useful only for optimization purposes
 trustworthiness is a qualitative property and by its nature, it cannot be 

achieved by fine tuning of parameters. Small changes can have a dramatic 
impact on system safety and security.



Poorly Engineered Systems – Design vs. Experiments

“The Roman bridges of antiquity were very inefficient
structures. By modern standards, they used too much stone,
and as a result, far too much labour to build. Over the years

we have learned to build bridges more efficiently, using fewer
materials and less labour to perform the same task.” !

WHAT HAPPENED TO software engineering? 
What happened to the promise of rigorous, disciplined, professional practices 
for software development, like those observed in other engineering 
disciplines?
What has been adopted under the rubric of “software engineering” is a set of 
practices largely adapted from other engineering disciplines: project 
management, design and blueprinting, process control, and so forth. The basic 
analogy was to treat software as a manufactured product, with all the real 
“engineering” going on upstream of that—in requirements analysis, design and 
modeling,among others.

Today’s software craftsmanship movement is a direct reaction to the 
engineering approach. Focusing on the craft of software development, this 
movement questions whether it even makes sense to engineer software.
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One might suggest computer science provides the underlying theory for 
software engineering—and this was, perhaps, the original expectation when 
software engineering was first conceived. 
In reality, however, computer science has remained a largely academic 
discipline, focused on the science of computing in general but mostly 
separated from the creation of software-engineering methods in industry.
While “formal methods” from computer science provide the promise of doing 
some useful theoretical analysis of software, practitioners have largely 
shunned such methods (except in a few specialized areas such as methods 
for precise numerical computation).



What Kind of Theory?

 Refute the idea that “system design is a definitely a-scientific activity driven by 
predominant subjective factors that preclude rational treatment”, promoted by 
 influential “guilds” of gurus, craftsmen, experts, within big SW companies and 

consulting companies 
 a booming market in cybersecurity, a consequence of poor engineering

 Giving up the ambition of building provably trustworthy and optimal systems 
inevitably leads to a dead end -- it is a roadblock to further system integration.

 What kind of theoretical foundations we need?. 

 Be very wary of the traditional engineering metaphor for building software and 
systems
Physical systems engineering is rooted in a kind of theory that is impossible for 
cyber systems which are not governed by simple uniform physical laws as 
physical systems are – there is no equivalent to analytic models 
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“The Roman bridges of antiquity were very inefficient
structures. By modern standards, they used too much stone,
and as a result, far too much labour to build. Over the years

we have learned to build bridges more efficiently, using fewer
materials and less labour to perform the same task.” !

What Kind of Theory? – Computing vs. Physical Systems

“Overall, the success rate was only 16.2%, 
while challenged projects accounted for
52.7%, and impaired (cancelled) for 31.1%.”!
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Both computing and physics deal with systems  X’= f(X,Y) where 

Computing
X’ is the next state 
X is the current state 
Y is the current input
Discrete variables 

Significant  differences: 
 Physical systems are inherently synchronous and driven by uniform laws.
 Computation models ignore physical time and are driven by specific laws 

defined by their designers

Computing systems can be studied as scientific theories!

What Kind of Theory? – Computing vs. Physical Systems



What Kind of Theory?

 Correctness  

 Verification is a stopgap – although it should be applied whenever 
possible and cost-effective  

 The ambition is not to build completely flawless systems  - which is 
simply not realistic – but instead to follow a rigorous design process by 
respecting principles of transparency and accountability

 Focus on design as a well-defined process leading from requirements to 
systems

 Learn from  successful design paradigms – HW, critical systems  
 Theory and techniques for reusing not only components but also 

principles based on a minimal number of well-defined and expressive 
concepts and constructs  

 Correctness by construction along the design flow based on principles 
of compositionality and composability
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System Design – About Design

RECIPE
(Program)

 Put apples in pie plate;
 Sprinkle with cinnamon 
and 1 tablespoon sugar;

 In a bowl mix 1 cup sugar, 
flour and butter;

 Blend in unbeaten egg, 
pinch of salt and the nuts;

 Mix well and pour over apples;
Bake at 350 degrees 

for 45 minutes

INGREDIENTS
(Resources)

1 pie plate buttered
5or 6 apples, cut up
¾ c. butter, melted

1 c. flour
½ c. chopped nuts
1tsp cinnamon
1tbsp sugar
1c. Sugar
1 egg

Apple 
Pie

Design is a Universal Concept! 
.
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System Design – Two Main Gaps
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System Design – Requirements

13

Trustworthiness requirements express assurance that the designed 
system can be trusted that it will perform as expected despite

HW failures Design Errors Environment 
Disturbances

Malevolent 
Actions

Optimization requirements are quantitative constraints on resources such 
as time, memory and energy characterizing

1) performance e.g.  throughput, jitter and latency; 
2) resources   e.g. storage efficiency, processor utilizability

The two types of requirements are antagonistic:  System design should 
determine tradeoffs between cost and quality 



System Design – Critical vs. Non-critical 

1
4

Safety critical: a failure 
may be a catastrophic 
threat to human lives

Security critical: 
harmful 
unauthorized 
access

Mission critical:  system availability is 
essential for  the proper running of an 
organization or of a  larger system

Best-effort: optimized use of resources for 
an acceptable level of trustworthiness

 For critical systems development costs increase exponentially with their size!
 Developing of mixt criticality systems is a challenge!



System Design – Reported Failures



System Design – Verification

Verification 
Method

Requirements

YES, NO, DON’T KNOW

Should be: 
 faithful e.g. whatever 

property is satisfied 
for the model holds 
for the real system

 generated 
automatically from 
system descriptions

Should be: 
 consistent

e.g. there exists 
some model 
satisfying them

 complete 
e.g. they tightly 
characterize the 
system’s behavior

Verification techniques are monolithic and highly costly to apply: ~ 
$1,000 per line of code for “high-assurance” software!

Model



System Design – Verification: Building models

v= …
u= ..
x= …
y= …
z=xy

MODEL

z

x

y
u

v

HW

For hardware, it is easy to get faithful logical finite state models 
represented as systems of boolean equations

semantics



System Design – Verification: Building models

if….
while  valid do
if x<0 then z=x

else z=-x;

while …  

P
R

O
G

R
A

M

semantics

For software this may be much harder …. 

va
lidx<0 

z:=x
x>=0 
z:=-x

valid

S
E

M
A

N
TI

C
 

M
O

D
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va
lidb 

z:=b
 b 
z:=  b 

 valid
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System Design – Verification: Building models

Tasks
Command
Handlers

Event
Handlers

APPLICATION
SW

For mixed Software/Hardware systems: 
 there are no faithful modeling techniques as we have a poor 

understanding of how software and the underlying platform interact 
 validation by testing physical prototypes or by simulation of ad hoc 

models

Antenna

Task
Scheduler

Sensors

Event
Scheduler

Timers

EXECUTION
PLATFORM

?
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Rigorous System Design  – The Concept

RSD considers design as a formal accountable and iterative process for deriving 
trustworthy and optimized implementations from an application software and models 
of its execution platform and its external environment

 Model-based: successive system descriptions are obtained by correct-by-
construction source-to-source transformations of a single expressive model rooted in 
well-defined semantics  - The  Model is the Software!

 Accountable: possibility to assert which among the requirements are satisfied and 
which may not be satisfied and why

RSD focuses on mastering and understanding design as a problem solving process 
based on divide-and-conquer strategies involving iteration on a set of steps and 
clearly identifying 

 points where human intervention and ingenuity are needed to resolve design 
choices through requirements analysis and confrontation with experimental 
results 

 segments that can be supported by tools to automate tedious and error-prone 
tasks 



Rigorous System Design – Four Guiding Principles

Separation of concerns: Keep separate what functionality  is provided 
(application SW) from how its is implemented by using resources of the target 
platform

Coherency: Based on a single  model to avoid gaps between steps due to the 
use of semantically unrelated formalisms e.g. for programming, HW 
description, validation and simulation, breaking continuity of the design flow 
and jeopardizing its coherency

Components:  Use components for productivity and enhanced correctness

Correctness-by-construction: Overcome limitations of a posteriori verification 
through extensive use of provably correct reference architectures and 
structuring principles enforcing  essential properties



Rigorous System Design – Simplified Flow

Integration of
Architectural Constraints

Code Generation
Integration of

Communication Glue

RequirementsRequirements

D-Finder

Cost/Performance
Analysis

Embedding

Application SW
Model in BIP

Deployable Code Distributed System Model
in S/R-BIP

System Model in BIP

MappingExecution Platform
Model

Application SW
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Component-based Design

Execution Platform

 Complex systems are built 
form a relatively small 
number of types of 
components (bricks, atomic 
elements) and glue (mortar) 
that can be considered as a 
composition operator.

 Components are 
indispensable for enhanced 
productivity and correctness

 Component composition 
lies at the heart of the 
parallel computing 
challenge

 There is no Common 
Component Model
- Heterogeneity



Component-based Design – Synchronous vs. Asynchronous 

Open problem: Theory for consistently composing synchronous and 
asynchronous components e.g. GALS

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

step step step step

Asynchronous components (General purpose application SW)
 No predefined execution step



Component-based Design – Synchronous vs. Asynchronous 

27
Matlab/Simulink



Component-based Design – Synchronous vs. Asynchronous 

UML Model 
(Rational Rose)



Component-based Design – Synchronous vs. Asynchronous 

Mathematically simple does not imply computationally simple!
There is no finite state computational model equivalent to a unit delay! 

Unit Delay
x(t) y(t)=x(t-1)

x(t)
x x

y(t)
y y

1 s

x 

x 


y

y=0 y=0

y=1y=1


y

Equivalent timed automaton, 
provided that the distance 
between two consecutive input 
changes is more than 1s.



Thread-based programming

Component-based Design – Programming Styles

Software Engineering

Actor-based programming

Systems Engineering



Component-based Design – Interaction Mechanisms

Broadcast: asymmetric synchronization 
triggered by a Sender

Existing formalisms and theories are not expressive enough

 use variety of low-level coordination mechanisms including 
semaphores,  monitors, message passing, function call

 encompass point-to-point interaction rather than multiparty 
interaction

Rendezvous: atomic symmetric 

synchronization



Component-based Design – Composition 

 Most component composition frameworks fail to meet these requirements
 Process algebras e.g. CCS, CSP, pi-calculus do not distinguish 

between behavior and coordination
 Most  Architecture Description Languages (ADL) are ad hoc and lack 

rigorous semantics.

 Is it possible to express component coordination in terms of composition 
operators?
We need a unified composition paradigm for describing and analyzing the 
coordination between components in terms of tangible, well-founded and 
organized concepts and characterized by
 Orthogonality: clear separation between behavior and coordination 

constraints
 Minimality:  uses a minimal set of primitives
 Expressiveness: achievement of a given coordination with a minimum 

of mechanism and a maximum of clarity



Component-based Design – The Concept of Glue

Build a component C satisfying a given property P, from 
 C0 a set of atomic components described by their behavior
 GL ={gl1, …, gli, …} a set of glue operators on components

c1 c’1
gl1

c2 c’2 

gl12
sat Pgl2

Glue operators are stateless – separation of concerns between 
behavior and coordination



Component-based Design – Glue Operators

B1

gl
B2 Bn

We use operational semantics to define the meaning of a 
composite component  – glue operators are “behavior 
transformers” 

Operational
Semantics

B

Glue Operators 
 build interactions of composite components from the actions of 
the atomic components e.g. parallel composition operators
 can be specified by using  a family of operational semantics rules 
(the Universal Glue)



Component-based Design – Glue Operators: Properties





Glue is a first class entity independent from behavior that can be 
decomposed and composed

gl1

1. Incrementality

gl gl2

gl2
gl1

2. Flattening 

gl



Component-based Design – Glue Operators: Expressiveness

c1 c2 c3 c4 c1 c3 c2 c4

gl1

gl1
gl1

Given two glues G1 , G2 

G2 is strongly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0



 Different from the usual notion of expressiveness!

 Based on strict separation between glue and behavior



Component-based Design – Glue Operators: Expressiveness

c3c1 c2 c1 c3 c c2

gl1

gl1
gl1

Given two glues G1 , G2 

G2 is weakly more expressive than G1

if for any component built by using G1 and a set of components C0

there exists an equivalent component built by using G2 and C0 C
where C is a finite set of coordinating components.





Component-based Design – Glue Operators: Expressiveness

BIP BI CCS 

SCCS

CSP

<S

<S

<S

<S W >W >

W >

W >

[Bliudze&Sifakis, Concur 08]

S
Universal

Glue 



Component-based Design – Modeling in BIP

B    E    H    A    V     I     O    R
Interactions (protocols)

Priorities  (schedulers)

Layered component model

Composition operation parameterized by glue IN12, PR12

IN12
PR12

PR1 
IN1 

PR2 
IN2 IN1  IN2  IN12

PR1  PR2  PR12
S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

S
2
S

Expressiveness
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Correct by Construction

Execution Platform

System Model

sat Functional

sa
t E

xt
ra

-F
un

ct
io

na
l

 : refinement relation 
preserving
functional properties

Requirements

Application SW
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Correct by Construction – Architectures

Architectures 
 depict design principles, paradigms that can be understood 

by all, allow thinking  on a higher plane and avoiding 
low-level mistakes

 are a means for ensuring global properties characterizing the 
coordination between components – correctness for free

 Using architectures is key to ensuring trustworthiness and 
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of standard reference 
architectures -- nobody ever again have to design from scratch a banking 
system, an avionics system, a satellite ground system, a web-based e-
commerce system, or a host of other varieties of systems.
 Time-triggered architectures  
 Security architectures
 Fault-tolerant architectures
 Adaptive Architectures
 SOAP-based architecture, RESTful architecture



43

Correct by Construction – Architecture Definition

An architecture is a family of operators A(n)[X] parameterized by their arity n 
and a family of characteristic  properties P(n)

 A(n)[B1,..,Bn] = gl(n)(B1,..,Bn, C(n)), where C(n) is a set of coordinators

 A(n)[B1,..,Bn]  meets the characteristic property P(n).

Client-Server 
Architecture

C C S S

Glue

C C S S

Transaction Processing 
Component=

Characteristic property: atomicity of transactions, fault-tolerance …. 

Note that the characteristic property need not be formalized!
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Correct by Construction – Architectures

Components

Architecture
for Mutual Exclusion

Rule1: Property Enforcement

Architecture
for Mutual Exclusion

satisfies  Mutex



Correct by Construction – Architectures: Composability

Mutual Exclusion 

Rule2: Property Composability 

Scheduling Policy

Mutual Exclusion 


Scheduling Policy

Feature interaction in telecommunication systems, interference among web 
services and interference in aspect programming are all manifestations of lack 
of composability

Sifakis et al “A General Framework for Architecture Composability” SEFM 2014



Components – Correctness-by-Construction
Fully customizable smartphones : The design for Project Ara consists 
of what we call an endoskeleton (endo) and modules. The endo is the 
structural frame that holds all the modules in place. A module can be 
anything, from a new application processor to a new display or keyboard, 
an extra battery, a pulse oximeter or something not yet thought of!



Correct by Construction – Refinement 


Rendezvous

Protocol 
(Asynch Message Passing)

The Refinement Relation 

S1 S2

S1  S2   (S2 refines S1) if
 all traces of S2 are traces of S1(modulo some observation criterion)
 if S1 is deadlock-free then S2 is deadlock-free too
  is preserved by substitution

C1 C2 C4 C’1C3 C’2 C’3 C’4



gl
Protocol

C’1 C’2

Rendezvous

C1 C2

gl
Rendezvous

C1 C2

Correct by Construction – Refinement 





Preservation of  by substitution

Protocol

C’1 C’2



Correct by Construction – Refinement Preservation

a

C1 C2

str(a)

cmp(a)

rcv(a)

ack(a)

C’1 C’2D

ab

C1 C2C3

str(a)

cmp(a)

rcv(a)

ack(a)cmp(b)

rcv(b)

ack(b)

C’1 C’2C’3D13 D23

str(b)







Correct by Construction – The BIP Toolset

Distributed Computing Infrastructure

C nesC DOL Lustre Simulink
BIP

Parser
Language

Factory

Embedding Tools

Verification
D-Finder

BIP Compiler

BIP model

S/R BIP 
model

C++ generator
(engine-based)

Distributed BIP
generator

C/C++ C/C++

Code generation 
and runtimes

BIP Runtime Engine

BIP 
executable

C/C++ C/C++

BIP 
executable

S2S
Transformers

Platform 
model

BIP 
executable

BIP 
executable

BIP metamodel

Model Repository



Correct by Construction – HW-driven refinement

DOLApplication SWApplication SW MappingMapping ArchitectureArchitecture

Application Application 
SW Model

HW 

Model

HW 
Architecture

Model

System 
Model

Translation

Transformation

HW 
Component 
Library
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Simulation
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Correct by Construction – Distributed Implementation

Distributed Mutual Exclusion Protocol

Distributed
Implementation

Interaction
Protocol for

l1

Interaction
Protocol for

l2

Interaction
Protocol for

l3

Distributed 
Execution 
Engine

Interface Interface Interface Interface Interface

I1

I2

I3



Correct by Construction – Distributed Implementation

S2SS2S

S2SS2S

S2SS2S

C1C1 C6C6C3C3 C5C5C2C2 C4C4

C’1

offer port

C’2 C’3 C’4 C’5 C’6

Interaction ProtocolInteraction Protocol

offerport

Interaction ProtocolInteraction Protocol

offerport

reserveok

CR 
Protocol

fail

Conflict Resolution Protocol

reserveok fail

S2SS2S

S2SS2S

S2SS2S

1

offer port offer port offer port offer port offer port



reserveok fail reserveok fail

  



   



Correct by Construction – Distributed Implementation

Interaction Protocol


Interaction Protocol


Interaction Protocol


Interaction Protocol


reserve2 ok2 fail2 reserve3 ok3 fail3reserve4 ok4 fail4

Token Ring 
CRP

Token Ring 
CRPRTST

Token Ring 
CRPRTST

RT ST

p1

C’1 C’3C’2 C’4

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C’5

o51 p7 p8o52

C’6

o6 p5 p6

C1 C6C3 C5C2 C4

  





Correct by Construction – Distributed Implementation

reserve2 ok2 fail2 reserve3 ok3 fail3 reserve4 ok4 fail4

Dining 
Philosophers

CRP Dining 
Philosophers

CRP

Dining 
Philosophers 

CRP

SF1
RF1
SR1
RR1
SF2
RF2
SR2
RR2

p1

C1’ C3’C2’ C4’

o1 o2 o3 o41p2 p3
p5

p6p4 o42

C5’

o51 p7 p8o52

C6’

o6 p5 p6

C1 C6C3 C5C2 C4

  



Interaction Protocol


Interaction Protocol


Interaction Protocol


Interaction Protocol




Correct by Construction – Distributed Implementation

Conflict 
Resolution 
Protocol

Partitioning of 
Interactions

S2SS2S

S2SS2S
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 System Design

 Rigorous System Design
 Separation of Concerns
 Component-based Design
 Semantically Coherent Design
 Correct-by-construction Design

 Discussion



Discussion – The Way Forward

Constructivity: There is a huge body of not yet well-formalized solutions to 
problems in the form of algorithms, protocols, hardware and software 
architectures. The challenge is to 
 formalize these solutions as architectures and prove their correctness
 provide a taxonomy of the architectures and their characteristic properties 
 decompose any coordination property as the conjunction of predefined 

characteristic properties enforced by predefined architectures? 

Design formalization raises a multitude of deep theoretical problems related 
to the conceptualization of needs in a given area and their effective 
transformation into correct artifacts. Two key issues are

Languages: Move from thread-based programming to actor-based 
programming for component-based systems 
 as close as possible to the declarative style so as to simplify reasoning and 

relegate software generation to tools 
 supporting synchronous and asynchronous execution as well as the main 

programming paradigms
 allowing description of architectures and high-level coordination 

mechanisms  



Discussion – Is it attainable?

We should learn from two successful rigorous design paradigms:
 VLSI design and associated EDA tools have enabled the IC industry to 

sustain almost four orders of magnitude in product complexity growth 
since the 80386, while maintaining a consistent product development 
timeline.

 Safety-critical systems ensure trustworthy control of aircraft, cars, 
plants, medical devices   

Main reasons of success
 Coherent and accountable design flows, supported by tools and often  

enforced by standards
 Correct-by-construction design enabled by extensive use of 

architectures and formal design rules

These are only instructive templates
 ICs consist of a limited number of fairly homogeneous components
 critical systems development techniques are not cost-effective for 

general purpose systems



Discussion – Why Is It So Hard?

The Physics Hierarchy

The Universe

Galaxy

Solar System

Electro-mechanical System

Crystals-Fluids-Gases

Molecules

Atoms

Particles

The Computing Hierarchy

The Cyber-world

Networked System

Reactive System

Virtual Machine

Instruction Set Architecture

Register Transfer Level

Logical Gate

Transistor

The Bio-Hierarchy

Organism

Organ

Tissue

Cell

Protein and RNA networks

Protein and RNA

Genes

We need theory, methods and tools for climbing 
up-and-down abstraction hierarchies

Ecosystem
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Discussion – The Rationale for Design 
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Discussion – For a System Design Discipline

Is everything for the best in the best of all possible cyber-worlds ?
- The toughest uphill battles are still in front of us

Achieving this goal for  systems 
engineering  is both an intellectually 
challenging and culturally enlightening 
endeavor – it nicely complements the 
quest for scientific discovery in natural 
sciences

Failure in this endeavor would 
 seriously limit our capability to 

master the techno-structure 

 also mean that designing is a 
definitely a-scientific activity driven 
by predominant subjective factors 
that preclude rational treatment



Discussion  

Thank You


