Rigorous System Design

ICE 2015
June 4, Grenoble

Joseph Sifakis

The BIP team Grenoble
EPFL Lausanne

g Poorly Engineered Systems

0 The most important trend in ICT is the increasing integration of devices and
services, e.g. loT

O Unfortunately, with the exception of a few well-regulated areas, e.g.
avionics, the majority of systems are poorly engineered

O No need to be a wizard to realize that the 10T vision cannot come true,
under current conditions. The main roadblocks to its achievement is the
iImpossibility to meet crucial requirements for the development of
autonomous services

= poor dependability of infrastructures and systems
* impossibility to guarantee response times in communication.

O Cybercrime cannot be mastered if we do not radically change the way we
design and develop systems.

O There is no miracle. If we do not even understand how a system is built, it
will never be possible to guarantee its trustworthiness.

O The current situation is the result of the conjunction of many factors.

Poorly Engineered Systems — Theory vs. Practice

Theoretical research

has a predilection for
mathematically clean
theoretical frameworks, no
matter how relevant they
can be.

results are “low-level” and
have no point of contact
with real computing - they
are mainly based on
transition systems which are
structure-agnostic and
cannot account for real-
languages, design
principles, architectures etc.

Practically-oriented research

= frameworks for
programming or modeling
real systems are
constructed in an ad hoc
manner - by putting
together a large number of
constructs and primitives.

= these frameworks are not
amenable to formalization.
It is also problematic to
assimilate and master their
concepts by reading
manuals of hundreds of
pages.

Joseph Sifakis (2013), "Rigorous System Design",

Foundations and Trends® in Electronic Design Automation: Vol. 6: No. 4, pp 293-362.

Poorly Engineered Systems — Design vs. Experiments

The need for rigorous disciplined design is sometimes directly or indirectly
guestioned by developers of large-scale systems (e.g., web-based systems)
who privilege experimental/analytic approaches:

= The cyber-world can be studied in the same manner as the physical world,
e.g. Web Science, “Cyber-Physics?”

= The aim is to find laws that govern/explain observed phenomena rather than
to investigate design principles for achieving a desired behavior.

“On line companies don’t anguish over how to design their Web sites.
Instead they conduct controlled experiments by showing different versions
to different groups of users until they have iterated to an optimal solution” .

It is clear that
= experimental approaches can be useful only for optimization purposes
» trustworthiness is a qualitative property and by its nature, it cannot be
achieved by fine tuning of parameters. Small changes can have a dramatic
impact on system safety and security.

Poorly Engineered Systems — Design vs. Experiments

WHAT HAPPENED TO software engineering?

What happened to the promise of rigorous, disciplined, professional practices
for software development, like those observed in other engineering
disciplines?

What has been adopted under the rubric of “software engineering” is a set of
practices largely adapted from other engineering disciplines: project
manaagement desian and bluenrintina. nrocess caontrol. and so forth. The basic

Today’s software craftsmanship movement is a direct reaction to the
engineering approach. Focusing on the craft of software development, this

. . .
movinmonnt nivinctinne \llllf'\f\“'l’\nlf 1t Ay mr\llnr\ ecnnen tn nnoninony r\n'F'hnlr\rn

One might suggest computer science provides the underlying theory for
software engineering—and this was, perhaps, the original expectation when
software engineering was first conceived.

In reality, however, computer science has remained a largely academic
discipline, focused on the science of computing in general but mostly
separated from the creation of software-engineering methods in industry.
While “formal methods” from computer science provide the promise of doing
some useful theoretical analysis of software, practitioners have largely
shunned such methods (except in a few specialized areas such as methods
for precise numerical computation).

g What Kind of Theory?

0 Refute the idea that “system design is a definitely a-scientific activity driven by
predominant subjective factors that preclude rational treatment”, promoted by
» influential “guilds” of gurus, craftsmen, experts, within big SW companies and
consulting companies
= a booming market in cybersecurity, a consequence of poor engineering

O Giving up the ambition of building provably trustworthy and optimal systems
inevitably leads to a dead end -- it is a roadblock to further system integration.

O What kind of theoretical foundations we need??.

= Be very wary of the traditional engineering metaphor for building software and

systems

Physical systems engineering is rooted in a kind of theory that is impossible for
cyber systems which are not governed by simple uniform physical laws as
physical systems are — there is no equivalent to analytic models

What Kind of Theory? — Computing vs. Physical Systems

letters to the editor

Software Engineering,
Like Electrical Engineering

HOUGH 1 AGREE with the
opening lines of Ivar Jacob-
son’s and Ed Seidewitz’s
article “A New Software En-
gineering” (Dec. 2014) out-
lining the “promise of rigorous, dis-
ciplined, professional practices,” we
must also look at “craft” in software
engineering if we hope to raise the
profe&.blon to the 5tatu1~. of 5ay, elec-

COMMUNICATIONS OF THE ACM | FEBRUARY 2015 | VOL 58 | NO. 2

of safety-critical systems using three
different techniques.

Modern craft methods like Agile
software development help produce
non-trivial software solutions. But I
have encountered a number of such so-
lutions that rely on the chosen frame-
work to handle scalability, assuming
that adding more computing power
is able to overcome performance and
hen
nvi-

What Kind of Theory? — Computing vs. Physical Systems

Both computing and physics deal with systems X'=f(X,Y) where

Computing

X' Is the next state

X iIs the current state
Y is the current input
Discrete variables

Physics
— dX
X'= 9% 4t
X is the current state
Y is the current input
Variables are functions of time

Computing systems can be studied as scientific theories!

while x#y
do if x>y then x:=x-y
else y:=y-x

Law: GCD(x,y)=GCD(xo,Yo)

Significant differences:

Law: 72 kxy% - V2 kx? = V2 mv?

= Physical systems are inherently synchronous and driven by uniform laws.
= Computation models ignore physical time and are driven by specific laws

defined by their designers

g What Kind of Theory?

1 Correctness

= Verification is a stopgap — although it should be applied whenever
possible and cost-effective

= The ambition is not to build completely flawless systems - which is
simply not realistic — but instead to follow a rigorous design process by
respecting principles of transparency and accountability

O Focus on design as a well-defined process leading from requirements to
systems

= Learn from successful design paradigms — HW, critical systems

= Theory and technigues for reusing not only components but also
principles based on a minimal number of well-defined and expressive
concepts and constructs

= Correctness by construction along the design flow based on principles
of compositionality and composability

O System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

10

| . .
&, System Design — About Design

RECIPE

(Program)
INGREDIENTS

(RER V(=)

=1 pie plate buttered
=50r 6 apples, cut up
=3, c. butter, melted

=] c. flour

» Blend in unbeaten egg, ﬂ?ﬁé?ﬁﬁﬁzigﬁm

pinch of salt and the nuts; = 1tbsp sugar
= Mix well and pour over apples; =1c. Sugar
»Bake at 350 degrees P T
for 45 minutes ""

= Put apples in pie plate;
» Sprinkle with cinnamon
» and 1 tablespoon sugar; l
" In a bowl mix 1 cup sugar,
flour and butter;

Materialization

c
O
)

©
N

©
| -

-
©

()

&)

@)

-
al

/ uonezijeLare

(3|geInoaxa)
. MS uonedl|ddy

-~
N

(8nnese|oap)
Sluswalinbay

Correctness?

N
Q.
@
O
=
©
=
E
—
|

Correctness?

. .
& System Design

ol System Design — Requirements

Trustworthiness requirements express assurance that the designed
system can be trusted that it will perform as expected despite

]

HW failures Design Errors Environmen Mal_evolent
Disturbances Actions

Optimization requirements are quantitative constraints on resources such
as time, memory and energy characterizing

1) performance e.g. throughput, jitter and latency;

2) resources e.g. storage efficiency, processor utilizability

The two types of requirements are antagonistic: System design should
determine tradeoffs between cost and quality

13

System Design — Critical vs. Non-critical

MountfMount Sinai
SSSinai [Medical Center

Security critical:

Safety critical: a failure ["SEIHELY harmful
may be a catastrophic - unauthorized
threat to human lives access

Mission critical: system availability is
essential for the proper running of an
organization or of a larger system

Best-effort: optimized use of resources for . =
an acceptable level of trustworthiness amazoncom [1

Google 'Y/

= For critical systems development costs increase exponentially with their size!
= Developing of mixt criticality systems is a challenge! 1

System Design — Reported Failures
787 Dreamliner's safety systems failed. NTSB savs .
Massive cyberattack hits Internet users I S0ftuare bug Led to Systen Failure

O s v s o e ncer o SMUEAOUN OF the Hartsfield-Jackson Atlanta International Airport

Toyota recalls more than 400,000 Priuses, other nybria cars

By Blaine Harden and Frank anrens | 9gs 0f Connunication betueen the FAA Alr Traffic Control Center, and Airplar

TOKYO — Toyota on Tuesday amno I D A2 Software Failures Responsible for 24% Of
global recall -- this time mvolving n . .

Priuses and other hybrid cars with by All Mﬂdlﬂﬂl Device Rec'ﬂlls

on the same day that the U.S. Transj

Department said 1t 1s reviewing driv LDEE u'I: thE II'IHI"E Fular' La"dEr 2

hard-to-handle steerine on the 2009- .
Crash of A1lr France Flight 447

. ... Northeast blackout leaves 50M people
Crash of American A1rlines without power, August 14, 2003

Miscalculated Radiation Doses at the Mational Oncology Institute .
¥ Inside the Pentium II Math Bug

Explosion of Ariane 5 B Flight 581 bpu Dahaowt B Pallinc

Fouer-Dutage across Northeastern .3, and Southeastern Lanada

Vulnerabilities Found In Banking Apn<s
n Mathew J. Schwartz ENEWE"EU'S““MUW" Of the Hatch Muclear Pover Plant

gh . System Design — Verification

Should be:

O faithful e.g. whatever
property is satisfied

Should be:

L consistent
e.g. there exists

for the model holds some model
for the real system Verification satisfying them
O generated Method O complete

automatically from
system descriptions

e.g. they tightly
characterize the
system’s behavior

YES, NO, DON'T KNOW

Verification technigues are monolithic and highly costly to apply: ~
$1,000 per line of code for “high-assurance” software!

System Design — Verification: Building models

For hardware, it is easy to get faithful logical finite state models
represented as systems of boolean equations

semantics

—

B vooe. i

V= ...
u= ..

X= ...
y= ...
Z=XVY

PROGRAM

System Design — Verification: Building models

For software this may be much harder

if....
while valid do

If Xx<0 then z=x I
else z=-x;

while ...

semantics

—

SEMANTIC

—valid

-
O
<
ad
—
7))
M
<

— valid

l
¢ valid
|

—b
Z==Db

System Design — Verification: Building models

For mixed Software/Hardware systems:

= there are no faithful modeling techniques as we have a poor
understanding of how software and the underlying platform interact

= validation by testing physical prototypes or by simulation of ad hoc
models

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

20

Rigorous System Design — The Concept

RSD considers design as a formal accountable and iterative process for deriving
trustworthy and optimized implementations from an application software and models
of its execution platform and its external environment

O _Model-based: successive system descriptions are obtained by correct-by-
construction source-to-source transformations of a single expressive model rooted in
well-defined semantics - The Model is the Software!

O Accountable: possibility to assert which among the requirements are satisfied and
which may not be satisfied and why

RSD focuses on mastering and understanding design as a problem solving process
based on divide-and-conguer strategies involving iteration on a set of steps and
clearly identifying

O points where human intervention and ingenuity are needed to resolve design
choices through requirements analysis and confrontation with experimental
results

[segments that can be supported by tools to automate tedious and error-prone
tasks

Rigorous System Design — Four Guiding Principles

Separation of concerns: Keep separate what functionality is provided
(application SW) from how its is implemented by using resources of the target
platform

Components: Use components for productivity and enhanced correctness

Coherency: Based on a single model to avoid gaps between steps due to the
use of semantically unrelated formalisms e.g. for programming, HW
description, validation and simulation, breaking continuity of the design flow
and jeopardizing its coherency

Correctness-by-construction: Overcome limitations of a posteriori verification
through extensive use of provably correct reference architectures and
structuring principles enforcing essential properties

Rigorous System Design — Simplified Flow

Requirements

Application SW
Model in BIP

Integration of
Architectural Constraints

Cost/Performance
Analysis

System Model in BIP

Integration of
Code Generation pus Communication Glue

Distributed System Model
in S/R-BIP

Deployable Code

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

24

gitComponent-based Design

= Complex systems are built
. / form a relatively small
number of types of
components (bricks, atomic
elements) and glue (mortar)
that can be considered as a
composition operator.

= Components are
iIndispensable for enhanced
productivity and correctness

= Component composition
lies at the heart of the
parallel computing
challenge

= There is no Common
Component Model
- Heterogeneity

Component-based Design — Synchronous vs. Asynchronous

Synchronous components (HW, Multimedia application SW)
 Execution is a sequence of non interruptible steps

tstepistepj—steplistep j

Asynchronous components (General purpose application SW)
L No predefined execution step

Open problem: Theory for consistently composing synchronous and
asynchronous components e.g. GALS

-~ N
- Ht / L1 Input
Dasired . Uheel Speed
- - Tire Torque
relative -. Rt ———— F’
i A -~ e torque iheelSpeed
shp "Ili IIE' - T
c

it 2)

Component-based Design — Synchronous vs. Asynchronous

yout

Rt >
-

— _""-____-_-\-
P Ly
A -
-
mu-zlip feight g 1 f
friction curve _”m”'*;}_F' 5 J
' \ehicle

speed

(angulan

..

Stopping distance

2

Vehicle speed

5d

1.0+ uf1Wu2) + (uZF=0Teps) &

._-|
-

=]
f—a-3]

Relative Slip

Matlab/Simulink

Copyright 1980-2006 The Mathiats, Inc.

27

Component-based Design — Synchronous vs. Asynchronous

UML Model

(Rational Rose)

Abort
Wait_Start

Start(HO_time) / begin
clock.set(298900);
HO.set(HO time) end

Wait_Igniti
on_Time

Wait_Clos
e EVBO

5 100)

timeout{clock) / begin :)
lock.set(TimeConstanis.MS_100); / clock.set(TimeConstants.M
current_is_ok:=EVBO.Open() end

Stop1

=
[current_is_ok = false |/ clock.reset() L

[current_is_ok = true]

timeout(clock) / current_is_ok:=EVVP Llose()

Open_EVB Wait_Clos
0 e EVVP
meout(clock) /
current_is_ok:=EVVP. / clock.set(TimeConstants.MS_10
Open() Stop2
[current_is_ok = false] -

[current_is_ok = true]

= Component-based Design — Synchronous vs. Asynchronous

Mathematically simple does not imply computationally simple!
There is no finite state computational model equivalent to a unit delay!

y()=x(t-1)
>

x(t) .
— Unit Delay

xT X4
x(t)
yT yl
y(t)
<2
xT 1:=0
9 A0
_1“ Equivalent timed automaton,
i = provided that the distance
y¥ yT .
between two consecutive input

_}4 /_1 changes is more than 1s.
_ Xy 1:=0

=8 Component-based Design — Programming Styles

Thread-based programming Actor-based programming

Software Engineering Systems Engineering

Component-based Design — Interaction Mechanisms

-

Rendezvous: atomic symmetric Broadcast: asymmetric synchronization

synchronization triggered by a Sender

Existing formalisms and theories are not expressive enough
= use variety of low-level coordination mechanisms including
semaphores, monitors, message passing, function call
= encompass point-to-point interaction rather than multiparty
Interaction

Component-based Design — Composition

O Is it possible to express component coordination in terms of composition
operators?
We need a unified composition paradigm for describing and analyzing the
coordination between components in terms of tangible, well-founded and
organized concepts and characterized by
= Orthogonality: clear separation between behavior and coordination
constraints
= Minimality: uses a minimal set of primitives
= EXxpressiveness: achievement of a given coordination with a minimum
of mechanism and a maximum of clarity

O Most component composition frameworks fail to meet these requirements
= Process algebras e.g. CCS, CSP, pi-calculus do not distinguish
between behavior and coordination
= Most Architecture Description Languages (ADL) are ad hoc and lack
rigorous semantics.

Component-based Design — The Concept of Glue

Build a component C satisfying a given property P, from
" ¢, asetof atomic components described by their behavior
= g/ ={gl, ..., gl, ...} a set of glue operators on components

gl12
sat P
c!| ¢! c| C)

Glue operators are stateless — separation of concerns between
behavior and coordination

Component-based Design — Glue Operators

We use operational semantics to define the meaning of a
composite component — glue operators are “behavior
transformers”

101 B
B, B B, | "

perational

Semantics

Glue Operators

= build interactions of composite components from the actions of
the atomic components e.g. parallel composition operators

= can be specified by using a family of operational semantics rules
(the Universal Glue)

Component-based Design — Glue Operators: Properties

Glue is a first class entity independent from behavior that can be
decomposed and composed

1. Incrementality

2
. o oo . . o oo .

112

2. Flattening

112

Component-based Design — Glue Operators: Expressiveness

= Different from the usual notion of expressiveness!

= Based on strict separation between glue and behavior

Given two glues G, , G,

G, is strongly more expressive than G,

If for any component built by using G, and a set of components ¢,
there exists an equivalent component built by using G, and ¢,

Component-based Design — Glue Operators: Expressiveness

Given two glues G, , G,

G, Iis weakly more expressive than G,
If for any component built by using G, and a set of components ¢,
there exists an equivalent component built by using G, and ¢,v ¢
where ¢ is a finite set of coordinating components.

|12

Component-based Design — Glue Operators: Expressiveness

SCCS
W$ <s
¥ < <
ccs —X > [g X > [BIp
=3
Universal
W?é <S Glue
CSP

[Bliudze&Sifakis, Concur 08]

Component-based Design — Modeling in BIP

Layered component model

Expressiveness

Ir_qu Ao UL '\

B E H A V Il O R

Composition operation parameterized by glue IN12, PR12

PR12
IN12

PR1 PR2
IN1 IN2

PR1 ® PR2 ® PR12

_PR1®PR2®PR12
INT ® IN2 ® IN12

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

40

g~ Correct by Construction

1 sat Functional

Application SW

> refinement relation

preserving
functional properties

sat Extra-Functional

= Correct by Construction — Architectures

Architectures
O depict design principles, paradigms that can be understood

by all, allow thinking on a higher plane and avoiding =
low-level mistakes G ;\

O are a means for ensuring global properties characterizing the v
coordination between components — correctness for free

O Using architectures is key to ensuring trustworthiness and
optimization in networks, OS, middleware, HW devices etc.

System developers extensively use libraries of standard reference
architectures -- nobody ever again have to design from scratch a banking
system, an avionics system, a satellite ground system, a web-based e-
commerce system, or a host of other varieties of systems.

Time-triggered architectures

Security architectures

Fault-tolerant architectures

Adaptive Architectures

SOAP-based architecture, RESTful architecture

COopDO0O

= Correct by Construction — Architecture Definition

An architecture is a family of operators A(n)[X] parameterized by their arity n
and a family of characteristic properties P(n)

A(n)[B1,..,Bn] = gl(n)(B1,..,Bn, C(n)), where C(n) is a set of coordinators
A(n)[B1,..,Bn] meets the characteristic property P(n).

: Glue
. . Gle

Architecture Transaction Processing
Component

Cl|C| e ClIC| =l

Characteristic property: atomicity of transactions, fault-tolerance

Note that the characteristic property need not be formalized!

43

8 Correct by Construction — Architectures

Rulel: Property Enforcement

Architecture
for Mutual Exclusion

Components

Architecture
for Mutual Exclusion

satisfies Mutex

44

=8 Correct by Construction — Architectures: Composability

Rule2: Property Composability

Mutual Exclusion Schedullng Policy

Itif I

Mutual Exclusion

&,
Scheduling Polic

Feature interaction in telecommunication systems, interference among web
services and interference in aspect programming are all manifestations of lack

of composability

Sifakis et al “A General Framework for Architecture Composability” SEFM 2014

Components — Correctness-by-Construction

Fully customizable smartphones : The design for Project Ara consists
of what we call an endoskeleton (endo) and modules. The endo is the
structural frame that holds all the modules in place. A module can be
anything, from a new application processor to a new display or keyboard,
an extra battery, a pulse oximeter or something not yet thought of!

TECH INNOVATION

Project Ara: Inside Google’s Bold Gambit
to Make Smartphones Modular

Tech WILL PROJECT ARA WORK? THE GOOD AND BAD OF

Guru)
Daily GOOGLE’S PLAN TO TURN PHONES INTO LEGOS

By Simon Hill — April 26, 2014

Debated: Google’s Project Ara Will Likely Fail

May 2, 2014 - 00:31 by Rob Enderle

Correct by Construction — Refinement

The Refinement Relation =

(Asynch Message Passing)

Cl/iC2 c3/c4 > Cl1 1 C2 /C3 |CH4

Sl S2

S1>S2 (S2refines S1) if

= all traces of S2 are traces of S1(modulo some observation criterion)
= If S1 is deadlock-free then S2 is deadlock-free too

= > is preserved by substitution

Correct by Construction — Refinement

Preservation of = by substitution

Frotocol

Cl [C2

Cl | C2

Rendezvous

Cl [C2

Cl | C2

vV

Correct by Construction — Refinement Preservation

rcv(b) str(b) str(a) rcv(a)

b a | :,\é Cé %‘) e
v é ¥ ack(b) (mp(b) cmp(at) ack(a)

\ty/ S O

)€

~

Correct by Construction — The BIP Toolset

Simulink

Model Repository

Embedding Tools

Platform
Language model

Factory BIP metamodel
| D-Finder § 525

Verification S/R BIP Transformers
model

Code generation

and runtimes C++ generator Distributed BIP .
(engine-based) generator BIP Compiler

C/C++| C/C++ |||

BIP BIP BIP

—. executable - executable - executable g

BIP model

BIP

BIP Runtime Engine Distributed Computing Infrastructure

Performance Evaluation

Correct by Construction — HW-driven refinement

Instrumented
System Model

Native BIP
Simulation

System

~
Application SW I Mappin I Architecture I
| pp L pping L Sl
. 1] /
(] | | |)
Component
Application hl-'IW Library
SW Model Architecture
: Model HdS
Natlve |_3|P Component
k Simulation Library

Model

I

Multi-
threaded
application

HdS
Code

/
\

Input

System Model Generation

Code Generation

Correct by Construction — Distributed Implementation

SW model

EQ Q|-. ’J.

12

Distributed L \

|mp|ementation Interface| |Interface| |Interface| |Interface Interface

Correct by Construction — Distributed Implementation

[al,a2][o3,04]
CR
al a2 a3 Protocol
| | . EEmEEE
C1 C2 C3 C4 C5 Cé
| |
o4 ﬁw

v

Conflict Resolution Protocol

Yok ' fail rese?ve vok vfaiI rese?ve
w .ok .fail reserye .ok iail reserye
lﬁtw Interaction Protocol Interaction Protocol
ol o2 o3 o4
\4 [J \4 []
port offer port offer

offer port offer port offer port offer port offer port offer port
o

Correct by Construction — Distributed Implementation

o4
[L.
Token Ring | , TokenRing Token Ring
CRP ST RT CRP ST RT CRP
reserve [Iokz Ifailz reser"e?’l ok?I_IfaiISr eser"eAI ok4Ufai|4
Interaction Protocol Interaction Protocol
al, a2 a3, a4

'Y YY
I I
|
|

\ \\\M 106 .

\
\ l |
|

Correct by Construction — Distributed Implementation

o4
b SFi ﬂ‘ Dining
Dining :i“af e Philosophers
Philosophers :;;‘ 4) .CRP
CRP ORF2 Dy Dining T
»m\. Philosophers
— CRP
reserve2 ok2 fail2 reserve3I ok3| | fail3 reserve4l ok4‘_i faila
Interaction Protocol Interaction Protocol
al, a2 a3, a4

LA Yy

I I \

1 \ l |

| |
p4 ’06 Ip5‘p6

Correct by Construction — Distributed Implementation

Conflict Dining Dining
Resolution Philo. CRP Philo. CRP
Protocol ~ .
\ 3 ining
Philo. CRP
al o2 o3 —

| | | |])
I 1 Interaction Interaction

Cl |} C2 || C3 || CA|lC5] CO |) ﬁi s | Prot.al a2 || Prot. a3 a4
i - | '
4 I

a

Partitioning of
Interactions

Partitioning of

N
Components — 'ﬁﬁ

!

/ Dining Philo. CRP

\ Inter. Inter. Prot. a.3,04
Corel Core2 Corel Core2 P;0t2 Il \ /,'I |
Code o 27111\

— s oot Generator Kol .. B .. 0 .. I . 8 . B . |

VR

Mapping of
Components

1 System Design

 Rigorous System Design
= Separation of Concerns
= Component-based Design
= Semantically Coherent Design
= Correct-by-construction Design

. Discussion

Sm—-—<xom<O

57

g Discussion — The Way Forward

Design formalization raises a multitude of deep theoretical problems related
to the conceptualization of needs in a given area and their effective
transformation into correct artifacts. Two key issues are

Languages: Move from thread-based programming to actor-based
programming for component-based systems
= as close as possible to the declarative style so as to simplify reasoning and

relegate software generation to tools

= supporting synchronous and asynchronous execution as well as the main
programming paradigms

= allowing description of architectures and high-level coordination
mechanisms

Constructivity: There is a huge body of not yet well-formalized solutions to
problems in the form of algorithms, protocols, hardware and software
architectures. The challenge is to

= formalize these solutions as architectures and prove their correctness

= provide a taxonomy of the architectures and their characteristic properties
= decompose any coordination property as the conjunction of predefined
characteristic properties enforced by predefined architectures?

- Discussion — Is It attainable?

We should learn from two successful rigorous design paradigms:

O VLSI design and associated EDA tools have enabled the IC industry to
sustain almost four orders of magnitude in product complexity growth
since the 80386, while maintaining a consistent product development
timeline.

O Safety-critical systems ensure trustworthy control of aircraft, cars,
plants, medical devices

Main reasons of success

O Coherent and accountable design flows, supported by tools and often
enforced by standards

O Correct-by-construction design enabled by extensive use of
architectures and formal design rules

These are only instructive templates

O ICs consist of a limited number of fairly homogeneous components

O critical systems development techniques are not cost-effective for
general purpose systems

g Discussion — Why Is It So Hard?
‘The Physics Hierarchy. The Bio-Hierarchy

m m Organ
Crystals-Fluids-Gases on Set Archite s Cel
Atoms m Protein and RNA

We need theory, methods and tools for climbing
up-and-down abstraction hierarchies

eVeE Protein and RNA networks

Genes

& Discussion — The Rationale for Desi

Information
Knowledge

Formalized Knowledge
Mathematics

Social

Biology Computing Sciences

S e

E— udy in order
[o
[

B = -
=
o T
o
o
o

Build in order
to Study

Human-Built Worlo

Artifacts Tl
Cyber-world

Discussion — For a System Design Discipline

Achieving this goal for systems
engineering is both an intellectually
challenging and culturally enlightening
endeavor — it nicely complements the
guest for scientific discovery in natural
sciences

Failure in this endeavor would
= seriously limit our capability to
master the techno-structure

» also mean that designing is a
definitely a-scientific activity driven
by predominant subjective factors
that preclude rational treatment

Is everything for the best in the best of all possible cyber-worlds ?
- The toughest uphill battles are still in front of us

Discussion

